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RESUMO

A pesquisa aqui apresentada visa abordar a nogéo de infinito sob alguns
pontos de vista, com o0 objetivo principal de indicar quao imbricada foi sua
formacdo como conceito matematico e suas conseqiiéncias para a aprendizagem
da matematica. Esta pesquisa é desenvolvida a partir de estudo bibliogréfico,

apresentacao e andlise de textos sobre o assunto.

S&o apresentados alguns conceitos matematicos introdutérios sobre a
nocado de infinito, alguns aspectos da evolucdo histérica dessa nocgdo na
matematica com destaque especial a obra “Os Paradoxos do Infinito” de Bolzano

e resultados de pesquisas no ambito da Educacdo Matemética.

Andlises que objetivam evidenciar relacdes existentes entre o processo
epistemologico e historico da nocdo de infinito, em especial de infinito atual e os
processos do desenvolvimento do pensamento humano na aprendizagem da

matematica, sdo apresentadas como fechamento.

Palavras chave: Infinito, Intuicdo, Nog&o Cientifica, Ensino da Matemética.



ABSTRACT

The research here presented approaches the notion of infinite under some
different views, with the main purpose of indicating how imbricated was its
formation as a mathematical concept and its consequences to the learning of
mathematics. This research is supported by bibliographical study, presentation

and analysis of the literature currently available on this subject.

Some introductory mathematical concepts are presented on the notion of
infinite, some aspects of the historical evolution of this notion in Mathematics, with
special consideration to Bolzano’s work “The Paradoxes of Infinite”, and data from

other researches in the field of Mathematics Education.

Analysis that intent to underline relationships between the epistemological
and historical process of the notion of infinite, specially actual infinite, and the
developmental process of human thinking in the learning of Mathematics, are

presented as a conclusion.

Key words: infinite — Intuition — Scientific Notion — Mathematics’ learning.
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INTRODUCAO

Ao iniciar esta pesquisa, ndo poderiamos imaginar como esta iria se
transformar com o decorrer do tempo e o aprofundamento de nossas leituras.
Haviamos pensado, inicialmente, em abordar o infinito no simples sentido de

diferencia-lo como infinito potencial e infinito atual.

As informacdes preliminares que dispunhamos davam-nos conta que o
infinito potencial era aquele que se referia a um método processual (0 do mais
um), enquanto o infinito atual tratava o0s conjuntos infinitos como conjuntos

completos.

Sabiamos que, desde os primérdios da matematica, o infinito potencial ja
trazia complicacdes e que os matematicos da época ja deslumbravam um infinito
diferente, porém, impossivel de ser analisado ou discutido por se contrapor aos

padrdes religiosos e pela forte rejeicdo da comunidade cientifica da época.

Mas, aquilo que somente seria um retrato da diferenga entre os infinitos,

com a respectiva correspondéncia a Educacdo Matematica, ganhou outras

dimensodes.

Assim, nesse nosso trabalho, fizemos uma retrospectiva histérico-
matematica do infinito, desde o seu conhecido surgimento a época de Platédo e

seus discipulos até os mais recentes estudos desse fendémenao.



Logicamente, tivemos a necessidade de dar um tratamento matematico
formal para conceituar o finito, o infinito e os diferentes tipos de infinitos. Ficou
claro, entretanto, que a formalizacdo matematica efetuada ha pelo menos dois
séculos, tinha justamente o objetivo de eliminar ou minimizar os problemas dos

paradoxos advindos de interpretacdes indevidas ou pouco claras do infinito.

S80 nos paradoxos do infinito que nos detivemos, por julga-los
extremamente importantes na compreensdo dos problemas da Educacao

Matematica.

O que seriam esses paradoxos? Segundo Kubrusly (2004), a descoberta
de um verdadeiro paradoxo, indica que a estrutura légica que suporta o sistema
de articulacdo de idéias ou raciocinios desse universo, ndo da mais conta de
transformar em razdo a complexidade desse sistema. Todo paradoxo indica a
existéncia de “indecidiveis”: afirmacdes que ndo podem ser demonstradas e nem
sequer negadas. Como solucionar os paradoxos? Poderiam ser solucionados,
localmente, enfraquecendo a sua logica ou algumas de suas leis basicas.
Entretanto, esses paradoxos voltariam a aparecer em outra situagdo ou em outro
tempo. Uma outra maneira seria a de romper com a causalidade, buscando um
ponto de bifurcacdo com novas verdades igualmente coerentes e consistentes.
Uma outra maneira, ainda, seria apelar a Deus, criador dos universos fisicos e

concretos, mas nao de um universo de idéias.

Invariavelmente, encontramos na matematica termos como: nunca,
sempre, assim sucessivamente, infinitamente, etc. O que dizer dos limites que
tendem ao infinito, do quociente que tende ao infinito? Passamos por isso tudo

sem, entretanto, nos deter.

Ha um famoso paradoxo que aqui exemplificamos, como argumento para
entender a sua “logica“: “havia um barbeiro que pendurara na sua barbearia um

cartaz com os seguintes dizeres: faco a barba de todos que néo fazem a proépria
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barba, e somente deles”. Nao estando o barbeiro barbudo, o paradoxo surge da
pergunta: quem faz a barba do barbeiro? O barbeiro faz a propria barba, se e
somente se, ndo faz a propria barba. A afirmacao: “o barbeiro faz a sua propria

barba“ é verdadeira, se e somente se, é falsa e vice-versa.

Um dos mais famosos matematicos de todos os tempos, Bernard Bolzano,
dedicou anos de sua pesquisa tratando desses paradoxos. Dentre 0s seus
importantes trabalhos, o mais conhecido deles é “Os Paradoxos do Infinito*. Sem

davida alguma, podemos afirmar que este é a ancora do nosso trabalho.

Analisamos como Bolzano tratava estes paradoxos e fizemos um paralelo
com alguns trabalhos de pesquisa na educacédo matematica, no sentido de tentar

tornar mais amigavel essa dificil convivéncia do infinito.

Logicamente, a leitura deste trabalho ndo é suficiente e nem tem a
pretensdo de esgotar o assunto, muito pelo contrario, destina-se apenas a
despertar a atencéo sobre o tema. Segundo Monaghan (1986) o pouco que se vé
sobre o infinito, nos cursos introdutérios de Calculo, ndo € suficiente para

entendé-lo.
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APRESENTACAO

“A introducéo do infinito
complica tudo no estudo da matematica!”
(Otte, M., 2004, PUC/SP)

As informac0des reunidas neste trabalho sobre a no¢&o de infinito procuram
evidenciar fatores epistemologicos e cognitivos geradores de dificuldades para a
compreensao da nocao de infinito. Objetivam dar énfase a complexidade dessa
nocdo para o0 pensamento humano e sua relevancia na construcdo do
conhecimento matematico e as implicagbes no processo do ensino e

aprendizagem.

Sabendo-se que, para a Educacdo Matematica é fundamental avaliar como
na evolucdo histérica da noc¢éo de infinito, os obstaculos foram sendo gerados e
que o seu enfrentamento teve um carater formativo para um modo de pensar em
Matematica. O conflito entre a intuicdo e o conceito cientifico traz desafios para o
processo do ensino e aprendizagem da Matematica, assim como trouxe aos
pensadores de todas as épocas. Os obstaculos epistemoldgicos consagrados no
desenvolvimento histérico da noc¢éo de infinito, e muito em particular da nocéao de
infinito atual, s&o motivos de sobra para que as dificuldades na aprendizagem,

advindas deles, sejam persistentes e de dificil trato no ensino.
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Este estudo aborda alguns tépicos relacionados a nocao de infinitos tendo
por alvo a epistemologia e a cognicdo. S&o eles: formalizacdo conceitual,
referencial historico, os infinitos na concepcéo de Bolzano e pontos abordados em

pesquisas na area da Educacdo Matematica.

O desenvolvimento do trabalho foi realizado segundo a seguinte
sistematica: levantamento bibliografico; escolha e sintese dos textos e elaboracéo
das analises de fechamento. Os alvos do estudo bibliografico foram livros de
Historia da Matematica e pesquisas de Educacdo Matematica. A importancia de
dois dos trabalhos sobre o tema e a ligacdo deste autor com a pesquisa de sua
orientadora constituiu o critério da escolha dos textos que sao sintetizados e
analisados nesta dissertacdo. A esséncia do pensamento de Bolzano sobre os
dois infinitos, potencial e atual, em sua obra “Os Paradoxos do Infinito” é

registrada aqui com a apresentacéo de forma sintética da Introducéo desse livro.

Procedimentos Metodolégicos

Os procedimentos para a organizacao deste trabalho resumiram-se em
levantamento bibliografico buscando textos que tratassem, sob diversos angulos,
o tema do infinito e em especial dos dois infinitos, o potencial e o atual.
Interessava-nos enfocar o conceito de infinito sob os prismas historico,
epistemoldgico e cognitivo. Assim sendo, nossos alvos foram artigos cientificos,

teses, dissertacoes e livros disponiveis.

Dadas as diferentes abordagens, tivemos que nos dedicar a leitura de um
namero significativo de textos, pois havia necessidade de identificar, sob diversos
titulos: teoria dos conjuntos, teoria dos conjuntos infinitos, niumeros transfinitos,
transfinito, infinito atual, infinito potencial e infinito atual, nUmeros algébricos e

transcendentais, teoria dos conjuntos transfinitos, algebra transfinita, teoria dos
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nameros transfinitos e teoria dos conjuntos, aqueles que abrigavam estudos de

NOSSo interesse.

O levantamento bibliografico foi realizado através de consultas as
bibliotecas virtuais das principais Universidades brasileiras (ao todo foram 252
consultas em teses e dissertacfes) e internacionais (americanas, canadenses,
espanholas, inglesas, francesas e portuguesas) e por consultas diretas as
bibliotecas das instituices de ensino na cidade de Sdo Paulo. N&o foi muito facil
encontrar o que pretendiamos. Entretanto, tendo em maos o primeiro artigo
“Infinito actual e inconsistencias” (Garbin, S. y Azcarate, C., 2002) pudemos, a

partir dele, encontrar uma gama consideravel de referéncias.

Visitamos diversos sitios via internet, como o0s de jornais e revistas
cientificas. No que tange aos livros, incluimos “Os paradoxos do Infinito” de
Bolzano, por sua importancia na conceituacdo matematica do infinito e pela
discusséao ali desenvolvida sobre as controvérsias do infinito atual. Estudamos os
“Paradoxos” em duas versdes, em espanhol e francés, optando por esta ultima

para o trabalho.

O segundo passo foi recorrer as bibliotecas e disponibilizar os trabalhos

necessarios.

ApOs a analise preliminar dos documentos selecionados, coube-nos

determinar o direcionamento do trabalho.

As escolhas dos textos foram realizadas em funcdo da amplitude da
apresentacdo do tema e reconhecimento dos autores. A inclusdo do artigo de
nossa orientadora foi motivada pela pesquisa cognitiva aplicada em estudantes

brasileiros.

A complexidade do tema, aliado as dificuldades intrinsecas em supera-lo,

direcionou nosso proposito na elaboracdo de uma espécie de coletanea que
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interligasse 0s aspectos epistemoldgicos, matematicos, historicos e cognitivos,

que pudesse contribuir com estudos sobre 0 assunto na Educacédo Matematica.
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CAPITULO 1

A FORMALIZACAO MATEMATICA DO CONCEITO DE
CONJUNTO INFINITO

Teoremas e Corolarios

Conjunto Infinito

Defini¢cdo 1. Um conjunto F é finito quando é vazio ou quando existe para

algum ndmero natural n e uma bijegdo f: I, = {1,2,.., — F. O nimero n é

considerado o numero de elementos de F. O conjunto vazio tem zero elementos.

Defini¢cdo 2. “Um conjunto ndo vazio | € infinito se, e somente se, qualquer

que seja 0 nimero natural n, uma fungéo f: I, = {12,...,} - | n&o sera bijetora”.

A definicdo 2 proposta como negagédo da definicdo 1, como acima, nao
viabiliza a verificag&o de infinitude de um determinado conjunto. Como € habitual
na mateméatica, buscam-se suplantar essa impossibilidade por meio de condi¢ées

de caracterizagcdo. Tem essa perspectiva, 0 que apresentamos a seguir:

Teorema 1. Sejam n um numero natural qualquer, o0 conjunto

I, ={1 2, 3,..., i} e A uma parte néo vazia de I,. Se existir uma bijecéo de I, em A,

entao A = I,.
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Demonstragéo por indugéo finita sobre n.

» Paran =1, aimplicacdo é obviamente verdadeira;
 Provemos que se a implicacdo € verdadeira para n = k, entdo, é

também verdadeira paran =k + 1.

Suponhamos a implicacao verdadeira para n = k e consideremos f: | xs1 - A
bijetora, sendo A uma parte ndo vazia de | x+1 . Provemos que | y+; = A:

e Tomemosa A, talque: f(k+l)=a

« Consideremos f'=f/ | |1x~ A-{g, ouseja: f (x) =f (x) para todo x

pertencente a | g, bijetora, portanto, por definicdo, duas possibilidades

podem ocorrer:

1. A-{g é parte nao vazia de I.
A bijetividade de f e a hipétese de indugéo implicam que A-{g = Iy ;
f ‘restricdo de f e f (k+1) = a implicam que a = k+1 e conseqiientemente

que A =141, COMO queriamos demonstrar.

2. A-{g& n&o é parte de I .
A é uma parte ndo vaziade |y € A{a} nao é parte propria de Iy , entdo,
k+1 é elemento de A-{g§ e consegiientemente de Af: |1 — A é bijetora,

logo, existe p O | k41 : f(p) = k+1.

Definimos a seguir duas outras bijecbes g e h como segue:

O lks1 - Atalque:g (X) =f(x),para 1<x<ke,xtpe xzk+l;g(p)=ae
g (k+1) = k+1.

h:lk - A-{k+3} tal que: h (x) = g (x).
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A é parte nao vazia de I+, consequentemente, A - {k +]} € parte de Ix e

n&o vazia, pois, a # k+1. Ent&o, pela hipétese de indugéo A - {k+3 = I

Dai pode-se concluir que A = lx+1 como queriamos demonstrar.

Corolario do teorema 1. “N&@o pode existir uma bijecao f: F - J de um
conjunto ndo vazio e finito F sobre uma parte propria ndo vazia J de F.” (Lima,

1975, p. 34)

Demonstracéo por absurdo:

Sejam F um conjunto finito ndo vazio e J uma parte propria ndo vazia de F.
Suponhamos que exista uma funcdo f: F - J, bijetora. Verifiguemos que esta

suposicao contrariara o teorema 1, o que € absurdo.

De fato:

Se F é um conjunto finito e ndo vazio, existe por definicdo um numero

natural n e uma bijecdo¢ : In - F. Se f: F - J é bijetora, entdo, o conjunto A =

¢ (J) é parte propria ndo vazia de |, .O esquema abaixo indica a existéncia de

uma bijecéo entre I, e A, sua parte propria.

A existéncia da bijecdo, contrariamente ao teorema 1, foi acarretada por
supormos que existisse a bijecédo f. Assim, demonstramos que f n&o pode existir,

como queriamos demonstrar.
Teorema 2. Se F é um conjunto finito entdo todo subconjunto de E de F

também é finito e o nimero de elementos de E ndo excede o de F e s6 é igual

guando E = F. (Lima, 1975, p 35)
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A condicdo acima, enunciada no teorema 2, pode ser dita de outra forma:
um conjunto finito tem sempre um namero maior de elementos que qualquer uma
de suas partes préprias. Isto expressa a maxima dos conjuntos finitos: “O todo é

sempre maior que qualquer uma de suas partes”.

Teorema 3. “Um conjunto € infinito se e somente se esta em bijecdo com

uma de suas partes proprias nao vazias.” (Lima, 1975, p 35)

A implicacédo: se um conjunto | esta em bijecdo com uma de suas partes
proprias ndo vazias entdo ele € infinito, € consequéncia imediata do corolario 1.
Essa condicdo nos fornece a possibilidade de verificar a infinitude de conjuntos,

como por exemplo:

— O conjunto N dos numeros naturais.

Isto, porque existem uma parte propria ndo vazia de N, o conjunto P dos

nameros pares positivos e a bijecado f: N - P, definida por f(n) = 2n.

Para demonstrar a implicacédo inversa: “Se F € infinito entdo existem uma
parte propria ndo vazia A de F e uma bijegéo f: F—» A” necessitamos da nogéo de

conjunto enumeravel e de outros resultados.

Conjuntos Enumeraveis

Um conjunto X é enumeravel se é finito ou se infinito satisfaz a condigéo:
existe uma funcao f: N - X, bijetora. A funcéo f, ndo necessariamente Unica, €

denominada uma enumeracgao de X.

Exemplos de conjuntos infinitos enumeraveis:

* O conjunto N dos naturais (existe a bijecéo I: N - N, | a funcéo identidade);
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O conjunto Z dos inteiros (Z é enumeravel pois existe a bijecdo f: Z - N

definida por: f (z) = 2z, sez>0ef(z) =-2z+1, se z< 0);
O conjunto Q dos numeros racionais € enumeravel.

— A demonstracéao é feita da seguinte forma: o conjunto Q+ € enumeravel a
partir do método da diagonalizacdo de Cantor, o qual € obtido por meio

dos seguintes procedimentos:
a) os racionais maiores que zero séo alinhados, de modo que na linha |,

ficam aqueles cujos numeradores sado i comi=1,2,3,...

b) enumeram-se esses racionais pelo esquema:
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Procedemos de forma andloga com o conjunto Q-. Para terminar a
demonstracado da enumerabilidade de Q, ha necessidade de dois outros teoremas

0s teoremas 4 e 5.

Teorema 4.“0 produto cartesiano de dois conjuntos enumeraveis é

enumeravel.” (Lima, 1975, p. 40)

Teorema 5. “A unido enumeravel de conjuntos enumeraveis é enumeravel”

(Lima, 1975, p.40)

Assim, como Q+ e Q- sdo conjuntos enumeraveis, temos pelo teorema 5

que Q = Q.+ 0 Q- é enumeravel.

Teorema 6. “Todo conjunto infinito X contém um subconjunto infinito

enumeravel”. (Lima, 1975, p. 38)

De posse desses resultados, podemos provar a implicacéo: “Se F é infinito
entdo existem uma parte propria ndo vazia A de F e uma bijecédo f: F— A”. (Lima,

1975, p. 39)

Demonstracéao.

— Se X é infinito, pelo teorema 6, ele contém um subconjunto enumeravel:

A= {al,az,ag,,....,an,...} :

Consideremos o conjunto Y = (X-A) U {az,a4,a6,....,a2n,...} .Y €,
evidentemente, uma parte propria de X. A funcdo f: X - Y definida por: f(x) = x

se x [0 (X-A) e f (an) = azn € evidentemente bijetora, o que verifica o teorema.
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Teorema 7. (de Cantor): “Nenhuma fungéo ®: X 0O (X,Y) é sobrejetiva se
X é um conjunto ndo vazio qualquer, Y € um conjunto com no minimo dois pontos
e [I (X,Y) é o conjunto das funcdes definidas em X e a valores em Y”. (Lima, 1975,

p. 42).

Demonstracéao.

Indiguemos por ®, a funcdo imagem de x O X, pela ®. Construamos uma
funcédo f : X-Y tal que f #®d,, para todo x O X. Para tanto, basta associar para
cada x [0 X um valor para f(x)z @ (x), 0 que € possivel pois, Y tem no minimo dois

elementos.

A funcdo f assim construida ¢ um elemento de 0O (X, Y), mas ndo da

imagem de ®. Logo ® nao é sobrejetiva.

Corolario. Existe um conjunto ndo enumeravel.

O teorema de Cantor nos fornece, por exemplo, o conjunto.[] (N,N)

Teorema 8. (Teorema dos intervalos encaixantes): “A intersec¢ao de uma
sequéncia decrescente de intervalos limitados e fechados da reta real tem

interseccdo nao vazia.” (Lima, 1975, p.68)

Teorema 9. “O conjunto O dos numeros reais € um conjunto néo

enumeravel”. (Lima, 1975, p. 68)

Demonstracéao.

A demonstracdo se sustenta na seguinte propriedade. Se sdo dados o0s

numeros reais, a, b com a< b, um intervalo limitado e fechado | = [a, b] e um ponto

Xo da reta real, entdo, existem os numeros reais c e d com c< d e J = [c, d]
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intervalo fechado e limitado, tais que J O | e X, 0 J. E facil ver que basta tomar os

pontos c,d convenientemente.

Consideremos um conjunto X = {X,, X, ,....., X, ....} , subconjunto da reta real

e tal que ele seja enumeravel. Vejamos que necessariamente poderemos exibir
um numero real x que nao pertence a X e, portanto, ele ndo podera coincidir com
0 conjunto R, de todos os pontos da reta. Para tal, utilizando a propriedade acima
repetidas vezes obteremos a colecdo de intervalos limitados e fechados como
segue: I, tal que xp01q, I, tal que I, O 1y, e Xo O g, I3 0 12 € X3 Ols......e In O 1 pg,
Xn Oln. A partir dai, temos uma sequéncia decrescente I; O 1, O I3 0 ... O 1, O... de
intervalos limitados e fechados. Pelo teorema 9, existe x pertencente a

interseccéao de todos os |;, i=1,2,...n,.... Mas x; 0I;, qualquer que seja i= 1,2,...n....

Entdo, x [0 X e consequentemente X#[ o0 que acarreta a nao

enumerabilidade de O .

Teorema 10. “Todo intervalo ndo degenerado da reta real é néao

enumeravel” (Lima, 1975, p. 69)

Demonstracéao.

Com efeito, f: ]0,1[ - ]a, b[, definida por f(x) = (b-a) x + a € uma bijecao.
Logo, se provarmos que ]O,l[é nao enumeravel resultara que nenhum intervalo

nao degenerado pode ser enumeravel.

Ora, se ]0,1[ fosse enumeravel, ]O]] também seria e,
consequentemente, para cada n 0 Z, o intervalo ]n, n+:I] seria enumeravel pois
estd em bijecdo com ]OJ] sendo g a bijecdo definida por g (x) = x + n. Mas
0=U]n,n=1, ou seja, unido enumeravel de conjuntos enumeraveis e portanto

nOZ

pelo teorema 5 enumeravel, o que é absurdo.
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Corolario do teorema 5. “O conjunto dos nameros irracionais € nao

enumeravel”. (Lima, 1975, p. 69).

O=Q U (O-Q). Se (O-Q) for enumeravel, entdo pelo teorema 5 e, pelo

fato de Q ser enumeravel, [ também seria contrariando o teorema 10.

Teorema 11 O conjunto dos numeros algébricos € enumeravel (Niven,

1984, p. 199)

Corolario do teorema 11. O conjunto dos numeros transcendentes € nao

enumeravel.

Observacao.

A prova do teorema 11 € um pouco mais complicada do que a prova de

gue o conjunto dos racionais € enumeravel.

Cardinalidade de Conjuntos

Dois conjuntos A e B tém a mesma cardinalidade se existe uma
correspondéncia biunivoca entre eles. A cada conjunto pertencente a classe de
conjuntos que tém a mesma cardinalidade esta associado um numero cardinal

denotado por: card A ou por [A|.
— O namero cardinal de um conjunto vazio € zero.Istoé card 0 =0 ou
|l =0.
— O namero cardinal de um conjunto finito, ndo vazio, € um namero natural.

Isto €, se F é finito e F£0 entdo card F=n ou [F|=n ou n é o numero de

elementos de F.
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— O numero cardinal de um conjunto enumeravel E é [O,. Isto é, card

E =0y ou LECE O,.
— O ndmero cardinal de 0 é c. Isto é card O= c ou OOk c, c de

continuum.

Dois conjuntos A e B sdo equivalentes ou equipotentes se tém o mesmo

cardinal. Isto ocorre quando existir uma bijecéo entre eles.

Exemplos. N e Q; OO e um intervalo ndo degenerado qualquer de .

Definicdo. Dois conjuntos A e B séo tais que card (A) < card (B) se existir
uma funcéo f: A- B que seja injetiva, porém nao existe uma funcéo g: A-B que

seja sobrejetiva.

O teorema 6 garante que: “Se X € um conjunto infinito entdo card (N) <

Card (X)". Assim [ € o menor dos numeros cardinais dos conjuntos infinitos.

Teorema 12 “Qualquer que seja um conjunto A tem-se que card (A) < card
0(A). (Lima, 1975, p. 43).

Demonstracéao.

Sejam 0(A) o conjunto das partes de A e Y={0,4 . Veremos que existe a
bijecdo: &: O(A) —~ {A, Y} definida por: a cada conjunto X pertencente a [1(A)

associa-se a funcéo caracteristica de

X, E AL Y. & (x)=1sexOX e&, (x)=0sexOX.

Como Y tem dois elementos o teorema 7 de Cantor garante que ndo existe

funcdo sobrejetiva entre A e D{A,Y} e conseqlentemente ndo existe nenhuma
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funcdo ¢ entre Ae [ (A) sobrejetiva (porque sendo & o ¢ seria uma funcéo entre

Ae A, Y} sobrejetiva).

Mas, evidentemente a funcéo f: A (A) definida por f(x) = {X ¢ injetiva.

Logo card A < cardO (A).

Este resultado implica no fato de que o conjunto dos nimeros cardinais é

infinito.

Para finalizar esta sintese sobre a formalizacdo matematica do conjunto
infinito vale acrescentar a “Hipdétese do continuum: Nao existe nenhum numero

cardinal entre Og e c.”

A relacdo de ordem entre O, e c gerou muita polémica entre os
matematicos. Ha os que a admitem e toma essa hipétese na fundamentacédo de
sua matematica e outros que nao, construindo uma matematica transfinita, isto €,

a matematica dos nimeros cardinais, em outras bases.

Evolucao histérica

E na descoberta da existéncia de grandezas incomensuraveis que o infinito
irrompe na matematica grega. Os gebmetras gregos, em suas buscas por uma
unidade de medida comum para todas as grandezas, foram capazes de assumir a
divisibilidade ao infinito de grandezas. No entanto, essa idéia de infinito gera neles

uma profunda confuséao.

Se o0s gregos podiam realizar em suas teorias matematicas, especulacdes
sobre o infinito, na pratica sempre tentavam contorna-lo e esvazia-lo. A
indisposicao deles em explicitar as no¢des abstratas do infinito e do continuo, em
oposicdo as nocbes do finito e discreto, traduz-se de modo remarcavel nos

paradoxos de Zendo de Eléia. A época de Zendo (segunda metade do século V

26



A.C.), duas concepcdes se opunham: a concepcao continuista que considera o
namero, 0 espaco, o tempo e a matéria como divisiveis ao infinito e a concepcao
atomista que preconiza a existéncia de elementos primeiros indivisiveis. Para

Zenao essas duas concepcoes sao geradoras de impasses.

O paradoxo de Aquiles e a Tartaruga € um exemplo do impasse acarretado
pela ndo divisibilidade ao infinito do espaco e do tempo, pela concepcao
continuista. O impasse é consignado da seguinte forma: Aquiles disputa uma
corrida com a tartaruga e, como bom competidor, oferece a ela uma vantagem
inicial. E dada a largada e a tartaruga percorre o espaco inicial e Aquiles fica
parado. Enquanto Aquiles percorre esse espaco inicial, a tartaruga, por sua vez,
avanca um pouco. O espaco entre os dois se reduz, mas, a tartaruga conserva a
vantagem. Quando Aquiles cobre a nova distancia que o separa da tartaruga, ela
avanca mais um pouco e, assim, sucessivamente. Dessa forma, Aquiles jamais
alcanca a tartaruga. O impasse gerado em jogo nesse paradoxo € a dificuldade
de considerar uma quantidade infinita de espacos cada vez menores e a

impossibilidade de conceber intuitivamente que a soma do comprimento desses

espacos possa ser finita.

O argumento fica mais explicito ainda na dicotomia: antes de poder
percorrer uma linha inteira, um movel deve, de inicio, cobrir a metade dessa linha,

depois, a metade desta metade, e assim sucessivamente ao infinito. Zendo, na

realidade, compde mentalmente a série 1+EH2 +Eg+... sem o dominio de
2 20 kO

convergéncia.

Com o paradoxo da flecha, o impasse é criado se for considerado que o
espaco e o tempo sejam compostos de partes indivisiveis, digamos de “pontos” e

de “instantes”.
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A um “instante” de seu vbdo, uma flecha ocupa, portanto, um “ponto” do
espaco e entdo se encontra em repouso. Isto ocorrendo a cada instante de seu
voo, a flecha ndo pode estar em movimento. E assim, 0 movimento ndo poderia

existir.

O gue esta aqui em causa € a nocao de velocidade instantanea. Que valor

T ~ DX A . :
atribuir a razéo At da distancia percorrida Ax no intervalo de tempo Atse a

guantidade At torna-se muito pequena? Os antigos atribuiam a essa razdo o

valor zero, incapazes de imaginar um minimo n&o nulo.

Hoje a nocédo de limite fornece imediatamente a boa resposta: a velocidade

: " . . ~  AX .
instantanea € o limite da razao At guando At tende a zero. E, portanto, essa

nocdo que vira a ser central no Calculo Infinitesimal, que estd em jogo nos

paradoxos citados.

Os paradoxos de Zendo constituem os exemplos mais primitivos dos
impasses causados pela nocdo de infinito na historia. Tais paradoxos apontam
para propriedades perturbadoras do infinito e para armadilhas que nos aguardam

guando tentamos entender o sentido de processos ou fendmenos infinitos.

Mas, de fato, as raizes da nocao de infinito estdo no trabalho realizado ha
um século antes de Zenédo por Pitagoras (569-500 A.C.). Dois milénios e meio
depois de Pitagoras, os numeros irracionais desempenhariam um papel crucial na

concepcao de cardinalidade dos conjuntos infinitos.

Platdo contribuiu muito com a histéria da matematica e seus discipulos

fizeram avancar a idéia do infinito.

Dois dos maiores matematicos da Antiguidade, Eudoxio de Cnido e
Arquimedes de Siracusa (287-212 A.C.), deram continuidade a idéia de infinito

elaborada por Zendo. Ambos fizeram uso das quantidades infinitesimais —
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nameros infinitamente pequenos — com o objetivo de encontrar areas e volumes.
No livro V de Os elementos de Euclides estd4 descrita a maior realizacdo de
Eudoxio, o método da exaustdo, concebido para o calculo de areas e volumes.
Ele demonstrou que ndo temos de pressupor a existéncia real de quantidades
infinitamente mdultiplas de pequenas, utilizadas nesse tipo de célculo da area total
de uma regiao plana limitada por uma curva. Tudo o0 que temos de presumir é que
existem quantidades “tdo pequenas quanto desejarmos” pela divisdo continuada
de qualquer magnitude total: trata-se de uma introducdo ao conceito de infinito
potencial que inspirou matematicos do seculo XIX a introduzir o conceito de limite

como fundamento do Calculo.

Arquimedes expande as idéias de Eudoxio e utiliza o conceito de infinito
potencial para elaborar métodos a fim de encontrar areas e volumes, por meio
das quantidades infinitesimais. Como aplicacdo desses métodos, resultou que: o
volume de um cone inscrito em uma esfera com base maxima possivel € igual a

um quarto do volume.

Arquimedes mostrou como utilizar o infinito potencial para encontrar o

volume de uma esfera e de um cone.

A descoberta da incomensurabilidade da diagonal do quadrado em relacéo
ao seu lado acarreta o aparecimento de grandezas incomensuraveis. A teoria das
propor¢cdes de Eudoxio € incluida no V livro de Euclides, como uma tentativa de
dar um estatus a grandezas incomensuraveis e, de uma certa maneira, de
admissdo dos numeros irracionais no campo da matematica grega. Ela esta
norteada pelo método da exaustdo que permitiria aos gregos resolver problemas
que mais tarde constituiiam as bases do Calculo Infinitesimal: calculo de
comprimento de curvas, de areas ou volumes de superficies delimitadas por
curvas ou de sdlidos delimitados por superficies curvas, determinacédo de centro

de gravidade, construcéo de tangentes, etc.
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Os fildsofos e os matematicos gregos da Idade de Ouro, de Pitagoras a
Zendo, Eudoxio e Argquimedes fizeram inumeras descobertas a respeito do

conceito de infinito.

Surpreendentemente, muito pouco se avangou no estudo de suas

propriedades matematicas durante os dois milénios seguintes.

Desde o inicio do século XVII até o século XIX, dois matematicos fizeram
importantes descobertas sobre a natureza do infinito: Galileu (1564-1642) e
Bolzano (1781-1848). Com eles € desenvolvida a idéia de infinito atual. Até entao,

a nocao de infinito restringia-se a nocao de infinito potencial.

Durante um longo e triste confinamento, provocado pelo processo da Santa
Inquisicdo, Galileu escreveu um tratado, Didlogos sobre as duas novas ciéncias
(1638), no qual num didlogo complexo, discute diversas idéias filosoficas e
matematicas entre as quais, aspectos do infinito. Galileu explica a divisdo de um
circulo em “um namero infinito” de triangulos infinitesimais. Argumenta que, ao
“encurvar’” um segmento de reta até formar um circulo, “reduz-se na forma do
infinito atual aquele nimero de partes que na reta estavam contidas somente de
modo potencial”. E, entdo, o circulo pode ser pensado como um poligono com um
namero infinito de lados. Mais adiante nesse mesmo tratado, Galileu da um passo
além, o grande salto do infinito potencial — usado ndo sé pelos antigos como
igualmente pelos contemporéaneos — para o infinito atual. Galileu estabelece uma
correspondéncia biunivoca entre todos 0s numeros inteiros e todos seus
quadrados, e diz: “devemos concluir que existem tantos quadrados quantos sao
0S numeros”. Demonstra assim que um conjunto infinito, o conjunto de todos os
inteiros € igual “em numero” ao conjunto de todos os quadrados dos numeros
inteiros, sendo esse por sua vez um subconjunto proprio do conjunto dos niumeros
inteiros. Como poderia ser possivel admitir que “o todo ndo € maior que uma de

suas partes?” Tal fato seria absurdo no contexto dos conjuntos finitos. Galileu
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descobriu entdo que os conjuntos infinitos ndo se comportavam da mesma forma
que os finitos. Apesar de ser sua essa descoberta, ficou bastante atrapalhado,
pois Ihe era muito estranho pensar que, se por um lado, para cada quadrado
havia em correspondéncia biunivoca um numero inteiro, esgotando-os, portanto,
sobrariam ainda (infinitos) numeros — todos os inteiros que ndo fossem quadrados

perfeitos.

O infinito € um conceito intimidador, pois conflita com nossa intuicao.
Galileu parou por ai, ndo obstante, tivesse empreendido uma tentativa de
escrever um livro sobre o infinito. Aparentemente, o poder do infinito foi suficiente
para dissuadi-lo de tal projeto. Galileu foi entdo o primeiro na histéria a introduzir a
infinidade atual, mas a abordou entre os conjuntos enumeraveis. Ir além daqueles
conjuntos de poténcia do continuum, mencionados pelos gregos em seus estudos
de geometria e dos numeros irracionais que tanto perturbaram os pitagoricos
seria trabalho para outro matematico: Bernard Bolzano. Dedicaremos um capitulo

deste trabalho sobre sua obra “Os Paradoxos do Infinito”.

No final do século XIX, fatos sobre o infinito eram conhecidos, porém os

matematicos Ihes dispensavam pouca atencéo.

Bernhard Riemann (1826-66), talentoso matematico alemé&o, teve que
considerar o problema do infinito quando desenvolveu um trabalho inovador em
geometria e quando apresentou seu conceito de integral. A definicdo de integral
apresentada por Riemann, como soma infinita de integrais de funcdes
escalonadas, constituiu ponto de partida de Georg Cantor para o estudo do
infinito. Riemann estendeu o principio de Bolzano que apresenta conjuntos nao

enumeraveis ao demonstrar que os intervalos [01] e [0,2] tém o mesmo

cardinal.

O trabalho de Weirstrass sobre a expansao de uma funcdo em série de

poténcias traz a idéia de infinito de modo crucial, uma vez que a soma das
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poténcias “coincide” com a funcéo “no infinito”. Ele também desenvolveu em seus
estudos sobre funcbes a aproximacdo de uma funcdo por fungdes continuas,
fazendo uso do infinito na tradicdo Zendo e Eudoxio. O método da convergéncia
de funcbes acarretou uma defini¢cdo rigorosa dos numeros irracionais como limite

de sequéncias de nameros racionais.

Gauss acreditava no “infinito em potencial” — aquele que nao se pode
realmente atingir — um ideal, um lugar muito distante ou um numero que nao se

materializa de fato.

Como exemplo, pode-se citar o caso do céalculo da area de regibes
limitadas por curvas suaves, que para ele ndo havia necessidade de se “levar ao
infinito”, como se faz hoje, as somas de areas das regides limitadas por funcbes
escalonadas auxiliares construidas sob as curvas. A aproximagdo poderia ser
feita com “boa precisdo” em qualquer nivel finito. Esse entendimento seria
suficiente para Gauss e seus contemporaneos. Newton e Leibniz, que dois
séculos antes introduziram as primeiras noc¢des do Calculo Diferencial e Integral,
também se satisfaziam com a idéia de um infinito potencial, aquele que é

inatingivel.

Chegamos em Georg Ferdinand Ludwing Cantor, matematico russo que

nasceu em 3 de marco de 1845 em Sao Petersburgo.

A natureza do infinito havia sido sempre objeto de controvérsia. Os
famosos paradoxos de Zenao de Eléia, que explicavam com inquietante lucidez
que o movimento era impossivel porque exigia que 0 movel passasse por uma
infinidade de pontos em um tempo finito, suscitaram problemas desde a
antiguidade, como ja nos referimos. O éxito da Fisica newtoniana é em grande
parte, consequéncia de Newton ter introduzido o célculo das taxas de variacdo do
infinitamente pequeno. Em tempos modernos, tém aparecido novos problemas

associados ao infinito na teoria de conjuntos abstratos, teoria que proporciona
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fundamento e sedimentacdo a praticamente a totalidade da matematica
contemporanea. Ademais, a idéia do infinito tem estado sempre, através da
historia, carregada de tintas e matizes teoldgicos, que tem pesado na aceitacao
ou na rejeicdo desse conceito e das doutrinas matematicas e filoséficas a ele
associadas. Todas estas correntes de pensamento convergem na vida e obra de

Cantor.

A obra a que Cantor dedicou sua vida €, em substancia, muito conhecida.
Ao desenvolver o que ele mesmo batizou “aritmética dos numeros transfinitos”
dotou de contetdo matemético o conceito de infinito atual. O mais notavel feito de
Cantor consistiu em demonstrar, com rigor matematico, que a nocao de infinito
nao era uma nocao indiferenciada. Nem todos os conjuntos infinitos eram de igual
“tamanho” e, portanto, era possivel ordenar seus “tamanhos”. O conjunto dos
nameros irracionais, por exemplo, tem “tamanho maior” que “0” do conjunto dos

ndmeros racionais.

Esses resultados eram tdo chocantes a intuicAo humana que
contemporaneos de Cantor como, por exemplo, Poincaré, condenaram a teoria
dos numeros transfinitos como uma “enfermidade”. Kronecker, um dos
professores de Cantor, classificou-o de “charlatdo cientifico” “renegado” e

“corruptor da juventude”.

Com dificuldades de saude e tamanha rejeicdo de outros matematicos
proeminentes, ele mesmo resistiu a aceitar a existéncia de nimeros transfinitos,
convencido de que era impossivel formular coerentemente a noc¢do de infinito
atual numa matematica rigorosa. Nao obstante, de pronto superou seu
“preconceito” com respeito aos numeros transfinitos, por acha-los indispensaveis

para o desenvolvimento posterior de suas idéias matematicas.

Como professor da universidade aleméa de Halle, Cantor interessou-se pelo

estudo das fungbes com base em métodos desenvolvidos por Weirstrass, pelas
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aproximacdes de funcbes por séries de poténcias, que o levou ao conceito de
convergéncia. Envolveu-se profundamente com os métodos do infinito potencial
utiizado em matematica desde o0s gregos antigos, depois aperfeicoados e
modernizados pelos analistas de Berlim. Um de seus colegas, Heinrich Eduard
Heine, estava trabalhando com a aproximacédo de funcdes por meio das séries
trigonométricas. Heine animou Cantor a atacar o dificil problema da unicidade de
solucdo, isto €, a série trigonomeétrica que convergisse a uma determinada funcéo,
fosse Unica. Em 1872, com 27 anos, Cantor apresentou uma solucdo muito geral
para o problema, na qual estava o germe da teoria dos conjuntos transfinitos. O
problema que Heine sugeriu a Cantor era a continuacdo do trabalho do
matematico francés Jean Baptiste Joseph Fourier. Em 1822, Fourier havia
mostrado que o grafico de qualquer curva “razoavelmente lisa” (com um numero
finito de pontos de descontinuidade) poderia representar-se em todo o intervalo
de definicdo como soma de uma série trigopnométrica infinita. Para justificar que a
funcdo podia ser substituida pela série, seria necessaria a sua unicidade. Cantor
comecou buscando condi¢cBes para a validade desse problema da unicidade. Em
1870, chegou ao primeiro resultado: a funcdo deveria ser continua em todos os
pontos do intervalo de definicdo. Seu préximo passo foi o de relaxar a exigéncia
de continuidade em todos os pontos passando a demonstrar que a unicidade da
representacado trigonométrica continuaria valida se a funcéo tivesse um numero
finito de pontos de descontinuidade, pontos esses que Cantor chamava de

“pontos especiais”.

Buscando um enunciado mais geral para a sua teoria da unicidade, em
1872, Cantor publicou uma notavel descoberta: desde que os “pontos especiais”
estivessem distribuidos no intervalo de definicdo da funcdo, de forma
cuidadosamente especifica, poderiam até ser em numero infinito. O passo mais
importante da demonstracdo consistia em descrever a forma especifica de

distribuicdo dos “pontos especiais” e Cantor compreendeu que necessitava de um
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meétodo satisfatorio para analisar o continuo de pontos situado no intervalo de
reta. Dessa forma, Cantor decidiu prestar mais atencdo as relacbes entre os
pontos do continuo do que aos teoremas sobre séries trigonométricas. O que
ficou provado por ele é que a forma especifica tratava-se da enumerabilidade do

conjunto dos “pontos especiais”.

O estudo direcionou-se depois para as propriedades dos numeros reais.
Em um enfoque sob o angulo sugerido pelo seu professor Karl Weirstrass, Cantor
propds que todo numero irracional poderia ser representado por uma sucessao
infinita de racionais. N&o obstante suas vantagens, alguns matematicos
encontraram dificuldades em admitir o método de Cantor, pois pressupunha a
existéncia de sucessdes ou conjunto formado por infinitos elementos, a infinitude

atual, rechacada desde o tempo de Aristoteles.

Cantor nao foi o Unico a estudar as propriedades do continuo. Em 1872, no
mesmo ano em que foi publicado o artigo de Cantor, também o matematico
alemado Richard Dedekind publicou uma analise do continuo baseado nos
conjuntos infinitos. Em seu artigo, Dedekind expunha a idéia que, logo depois,
Cantor deu forma mais rigorosa: “a reta é infinitamente mais rica em pontos

individuais do que o dominio dos nimeros racionais como pontos individuais”.
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CAPITULO 2

BOLZANO E OS PARADOXOS DO INFINITO

Neste capitulo apresentamos a Introducéo a obra de Bernard Bolzano “Os
paradoxos do Infinito” constante na versao francesa escrita por Hourya Sinaceur.
Nessa introducdo, os autores apresentam de forma sintética as principais idéias
dos “Paradoxos” obra na qual, Bolzano, o grande matematico do século XIX, um
dos precursores do estudo matematico do infinito, desenvolve sua teoria a
respeito. Nela é enfatizada a complexidade desse conceito para a matematica,

como conseqUéncia da dificuldade para a mente humana.

Antes de apresentar a Introducdo, descrevemos a organizagdo do livro,
traducdo do alemé&o para o francés dos “Paradoxos” e esclarecemos algumas
notacgdes. A traducao do francés para o portugués da introducéo aos “Paradoxos”,

gue segue, foi por nés realizada.

A versdao em francés dos “Paradoxos”, traduzida por Hourya Sinaceur foi
publicada com o auxilio do Centro Nacional das Letras. E uma edicdo do Seuil,
situada na R. Jacob, nimero 27 em Paris VI°. A edicdo é de abril de 1993 e
compde uma colecdo denominada Sources du savoir (Fontes do saber). Na
primeira pagina, sdo expostas as intencdes desta colecdo, quais sejam, colocar
em circulacdo, apresentar, explicar e reinterpretar nos moldes atuais os textos

fundamentais, as fontes do saber. Na segunda, h4 um agradecimento do autor da
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versao aos responsaveis pela colecéo, indicando sua colaboracdo na leitura da
introducédo, da analise sobre a adequacdo da traducdo de alguns termos em
aleméo, etc. A introducdo inicia na pagina 11, com esclarecimentos de Sinaceur
sobre a forma que utilizaria a indicacéo bibliografica do texto. Sao eles: as obras
de Bolzano seriam indicadas por um B, seguido da data da primeira publicacéo e

a referéncia bibliografica completa estaria indicada apés a introducéo.

Todas as aspas e letras em italico que aparecem no texto sao de Sinaceur.
Os paragrafos indicados referem-se aos que compdem os “Paradoxos”. Nosso
pronunciamento sé aparece na apresentacdo dos cinco subtitulos que compdem
a introducdo. N&o reproduzimos aqui neste trabalho as notas de rodapé indicadas
na Introducéo por entender que a auséncia delas ndo prejudicaria em nada o
conteudo exposto por Sinaceur. Decidimos manter a indicagcdo dos paragrafos
para situar no texto as referéncias buscadas por Sinaceur na propria obra de

Bolzano.

Apos a introducdo, da pagina 39 a 47, estdo indicadas as referéncias
bibliograficas que aparecem no texto. Na pagina 50 se inicia o texto dos
“Paradoxos”, da edicdo postuma devida a FR. PRIHONSKY, realizada em Leipzig,
em 1851.

Na péagina de abertura dos “Paradoxos” ha uma citacdo de Leibniz, que
expressa todo o espirito de Bolzano ao defender, com veeméncia, o que ele
préprio denomina de “o verdadeiro infinito”:

“Eu sou de tal forma pelo infinito atual, que no lugar de admitir que a

natureza o despreza, como se diz vulgarmente, eu tenho para mim que ela o

dissemina por toda parte, para melhor marcar a perfeicdo de seu Autor”.
(Leibniz, Opera omnia sutdio ludov Dutens, tome I, parte X, p.243).
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Ha nas paginas 51 e 52 a apresentacao ao texto, escrita por Prihonsky. Da

pagina 53 a 56 estdo indicados os temas desenvolvidos nos 70 paragrafos dos

“Paradoxos”

8§ 1:

. Passamos a cita-los, pois os julgamos bastante explicativos.

Porque o0 autor se interessa exclusivamente pelos paradoxos do

infinito.

88 2-10: O conceito do infinito segundo 0s matematicos. Discussao.

§11:

§12:
§ 13:

§ 14:

§ 15:

§ 16:

§ 17:

§ 18:

8§ 19:

O infinito segundo Hegel e outros filésofos.

Outras defini¢cdes do infinito e critica.
O conceito bolzaniano do infinito; prova de sua “objetualidade” com
ajuda dos exemplos imputados ao dominio do nao real. O conjunto

das verdades e proposi¢cdes em si € infinito.

Respostas a algumas objecfes levantadas contra este conceito.
O conjunto dos numeros € infinito.

O conjunto das grandezas quaisquer € infinito.

O conjunto das partes simples que constituem o espacgo e o tempo
em geral é infinito; assim como o conjunto das partes simples
compreendidas entre dois pontos arbitrariamente proximos do espaco

ou do tempo.

N&o é verdade que toda grandeza que consideramos como a soma
de um conjunto infinito de outras grandezas todas finitas seja ela

mesma infinita.

Ha conjuntos infinitos que sdo maiores ou menores que outros

conjuntos infinitos.
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§ 20: Uma relacdo remarcavel entre dois conjuntos infinitos: é possivel
emparelhar termo a termo os elementos desses dois conjuntos de
modo que nenhum elemento de um ou do outro reste s6, nem se

encontre mais que um par por vez.

§ 21: Dois conjuntos infinitos, iguais em relacdo a pluralidade de suas
partes, podem contudo ser desiguais em relacéo as suas pluralidades

préprias.

8§ 22-23: Porque a situagao é diferente com os conjuntos finitos e a razéo

desta diferenca faz falta aos conjuntos infinitos.

§ 24: Duas grandezas, somas de dois conjuntos infinitos iguais, segundo a
correspondéncia biunivoca existente entre seus elementos, ndo sédo
automaticamente iguais, mas somente se 0s dois conjuntos tém os

mesmos principios de determinacao.

§ 25: Um infinito existe também no dominio real.
§ 26: O principio da determinag&o universal de todo real ndo contradiz esta

afirmacao.

§27:0s matematicos que falam de intervalos de tempo infinitamente
grandes ainda que limitados por duas extremidades ou, mais
freqientemente ainda, infinitamente pequenos, estdo enganados,
tanto aqueles que falam de distancias infinitamente grandes ou
infinitamente pequenas, quanto os fisicos e metafisicos, que supdem
ou afirmam a existéncia no universo de forgas infinitamente maiores

Ou menores que outras forgas.

§ 28: Principais paradoxos do infinito no dominio matematico; antes de tudo
na teoria geral das grandezas, e em particular, na teoria dos

numeros. Solucédo do paradoxo de um calculo do infinito.

§ 29: Existe de fato um céalculo com o infinitamente grande.
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§ 30: E da mesma forma um calculo com o infinitamente pequeno.

8§ 31-32: Falsidade de alguns conceitos permeando o infinitamente grande

§ 33:

§ 34:

§ 35:

8§ 36:

§ 37:

§ 38:

e infinitamente pequeno, mesmo entre 0s matematicos.

Precaucdo em observar os calculos com o infinito para evitar os

erros.

Determinacdo mais precisa do conceito do zero. Zero ndo devera
jamais intervir como divisor numa equacao que nao se reduz a uma

pura identidade.

Contradicbes que surjem da idéia, defendida ca e |4, que as
grandezas infinitamente pequenas se anulam ou desaparecem
quando a elas se juntam ou se retiram certas outras grandezas

infinitamente pequenas.

Alguns matematicos que assimilam as grandezas infinitamente
pequenas a zero, e consideram as grandezas infinitamente grandes
como o quociente por zero de uma grandeza finita, ndo escapam

dessas contradi¢cdes.

Como se deve construir o método de célculo com o infinito, de modo
que seja livre de toda contradicao.
Paradoxos do infinito na teoria aplicada das grandezas, a saber, na

teoria do tempo e do espaco.

O conceito de um continuo ou de uma superficie continua parece ja

§ 39:

contraditorio. Como dissipar esta aparéncia.

Paradoxos no conceito do tempo.

§ 40: Paradoxos no conceito do espaco.

§ 41: Como a maior parte dos paradoxos da teoria do espago encontra uma

explicacdo no conceito de espaco estabelecido pelo autor.
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88 42-43: Como uma concepg¢ao incorreta da teoria das grandezas infinitas
tem produzido representacbes incorretas entre certos

matematicos.

§ 44: Célculo por J. Schulz da grandeza do espaco infinito e localizagéo

precisa do erro neste calculo.

§ 45: A teoria do infinitamente pequeno da igualmente lugar a varias

afirmacdes absurdas.

§ 46: O que é preciso pensar da proposicado de Galileu segundo a qual a

circunferéncia do circulo € tdo grande quanto o centro do circulo.

§ 47: Exame do teorema segundo o qual a cicldide ordinaria tem uma
curvatura infinitamente grande no ponto onde ela encontra sua linha

de base.

§ 48: Explicacdo do fato que certas superficies espaciais se estendam em
um espaco infinito resultando numa grandeza finita; que outras, ao
contrario, encerradas num espaco finito, ttm uma grandeza infinita;
gue outras, enfim, conservam uma grandeza finita, mesmo que

descrevam uma infinidade de circunvolu¢des em torno de um ponto.

§ 49: Algumas outras relagbes paradoxais nas superficies espaciais que

tém uma grandeza infinita.

§ 50: Paradoxos do infinito no dominio fisico e metafisico. As verdades
necessarias para julgar corretamente esses paradoxos.
8§ 51: Quais preconceitos sao necessarios descartar para julgar

corretamente os paradoxos proprios a este dominio.

§ 52: E um preconceito escolar de suposic¢éo proibida a hiptese de uma

acao imediata de uma substancia sobre uma outra.
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8 53: Da mesma forma, € um preconceito crer que uma acao imediata a

distancia néo seja possivel.

§ 54: E preciso anular categoricamente a existéncia de uma

interpenetracdo das substancias.

§ 55: O preconceito que consiste em inferir a absoluta ndo espacialidade
dos seres espirituais, pelo fato que eles ndo podem ocupar sequer o

lugar de um ponto.

As Unicas diferencas entre as substancias criadas sao diferencas de

grau.

§ 56: O grande paradoxo da relagcdo entre substancias espirituais e
substancias materiais € automaticamente resolvido quando se adota

este ponto de vista.

§ 57: E um erro se representar o universo constituido somente de forcas,

sem substancias.

§ 58: A criagdo divina ndo comporta nem um grau minimo nem um grau

maximo de existéncia.

8 59: Que o espaco infinito seja continuamente preenchido de substancias
e foro compativel com a hipotese de uma densidade variavel
segundo o0s corpos e € inutil admitir a interpenetracdo das

substancias.

§ 60: Toda substancia estd em interacdo reciproca continua com cada

outra substancia do universo.

8 61: Existem substancias dominantes, mas nenhuma dentre elas possui

forcas infinitamente superiores aguelas das substancias dominadas.

8§ 62: Sobre a questdo do saber se uma colecdo qualquer de substancias

comporta necessariamente uma substancia dominante.
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§ 63: Para além das substancias dominantes, existe uma matéria no
universo:. o éter; esse nao tem substancias dominantes, preenche
todo o resto do espaco universal e constitui um ligacdo entre todos
0s corpos. Fendbmeno de atracdo e de repulsdo das substancias.
Representacdo que tem o autor.

Explicacdo do fato que duas substancias de forcas diferentes, quer
dizer cujas forcas atrativas sdo desiguais, tem, no entanto, pesos
absolutamente iguais; ou de outra forma, explicacdo do fato que os

pesos das substancias sao proporcionais as suas massas.

§ 64: Modo de manifestacao e efeitos da dominagéo de certas substancias

ou atomos sobre outras.

§ 65: Nenhuma substancia dominante sofre uma mudanca tal que a libere

de todas as partes presentes em sua vizinhanca imediata.

§ 66: Onde finda um corpo e comecga um outro, ou questédo da fronteira dos

corpos.

8§ 67: As condigbes para que dois corpos estejam em contato imediato

entre si.
§ 68: Os diferentes modos possiveis do movimento no universo.

§ 69: Se um atomo do universo descreve em um momento qualquer uma

linha reta ou uma curva perfeita.

Se a concepcgao do autor de um universo infinito da uma idéia de um
deslocamento do grande Todo numa direcdo dada qualquer ou de
uma rotacdo deste Todo entorno de um eixo ou de um centro do

mundo.

§ 70: Dois paradoxos tornados célebres por Euler.
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A Introducdo a verséo francesa escrita por Hourya Sinaceur

Uma citacdo de Hilbert abre o texto e anuncia a importancia e a
necessidade do infinito ser elucidado:

“Mais que alguma outra questdo, aquela sobre o infinito tem, desde sempre,

atormentado a sensibilidade dos homens;, mais que alguma outra idéia,

aquela do infinito tem fecundado suas inteligéncias, mais que algum outro
conceito, aquele de infinito requer ser elucidado” . (Hilbert,1926, p. 46)

De Aristoteles a Leibniz, o infinito: nada além do que em

potencial ou em ficgao.

Desde suas origens, a matematica se confronta com o infinito como um
problema crucial. A crise dos irracionais, os paradoxos de Zendo, o método de
exaustdo de Eudoéxio, o axioma de Arquimedes testemunham isso. Os gregos se
depararam com a dificuldade de ndo poderem exprimir racionalmente (por meio
da razao entre dois numeros inteiros positivos) a medida do comprimento de uma
linha continua num sistema discreto de numeros. Eles perceberam a armadilha da
“composicao” do continuo e de sua “divisibilidade ao infinito”; descobriram a
possibilidade de medir segmentos de curva, aproximando-os infinitamente pelo
comprimento de segmentos de reta (quadratura da parabola); souberam, assim,
como a idéia do infinito se apresentava na geometria e na aritmética, ou na
relacdo de uma com a outra. Apesar de ter sido Arquimedes quem tenha pensado
no infinito como geometricamente demonstravel e fisicamente realizavel “nos
grdos de areia esparramada por toda a terra”, é a analise de Aristételes que
prevaleceu. Essa analise negava toda existéncia fisica ao infinito, mas reconhecia
gue ele tinha uma necessidade matematica: considerar grandezas maiores (ou
menores) que qualquer grandeza dada. Recorre esse fato ao infinito potencial,

que nédo implica considerar totalidades infinitas acabadas ou ,atualmente, dadas.
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No que resta, mesmo Arquimedes, em seu Tratado do Método, em que ha a
presenca de “elementos infinitesimais”, ndo se utilizou no método de exaustdo um

modo de limitar suas operac¢des ao finito para efetuar a quadratura da parabola?

Os gregos enfrentavam o infinito considerando-o como um obstaculo que
necessitavam contornar com éxito. A necessidade de constituir positivamente um
conceito matematico do infinito ocorre com a analise galileana do movimento e,
sobretudo, com a invencédo do Calculo Infinitesimal por Leibniz e Newton. Esse
novo calculo, que introduz “elementos infinitesimais” com uma notacéo especifica,
o dx leibniziano que nds conservamos, desencadeia incessantes discussfes entre
0S matematicos, fisicos e fildsofos. A “querela” se portava menos sobre o Calculo
Infinitesimal, cuja eficacia se comprova em multiplos trabalhos, que sobre sua
justificativa. Nao era a utilizacdo de quantidades auxiliares néo finitas nos célculos
com resultados expressos em quantidades finitas, mas o estatuto ontolégico —
metafisico — dessas entidades que causava problema. Na perspectiva familiar da
época, em gque numero e quantidades tinham que ter um referente real (colecbes
finitas de objetos para os numeros inteiros, por exemplo, linhas, superficies e
volumes geomeétricos para as grandezas continuas), as quantidades infinitamente
pequenas ou infinitamente grandes pareciam evidentemente caiadas de
“irrealidade”. Dai a escapatéria imaginada por Leibniz de os apresentar como
“ficcbes” instrumentos de célculo sem realidade ontolégica, mas “bem
fundamentadas”, quer dizer, néo introduzindo nenhuma irregularidade nos
calculos, uma vez que esses se restringiam as quantidades “ordinarias”. No¢cdes
ideais, que abreviavam o raciocinio, semelhantes ao que chamamos por raizes
imaginarias na “analise comum”. Restava somente enunciar e aplicar regras fixas
de calculo para essas ficgdes: desprezar um infinitamente pequeno adicionado ou
subtraido a uma quantidade finita, desprezar um infinitamente pequeno de ordem

superior adicionado ou subtraido de um infinitamente pequeno de ordem inferior

(por exemplo: d*xoud®xcomrelagdoadx ), desprezar um infinitamente grande de
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ordem inferior relativamente a um de ordem superior, etc. No entanto, a essas
ficcbes correspondiam valores néo fixos mas “fluentes”, “tendendo a”, 0 ou o. Isto
dava lugar a uma dificuldade de outro tipo, relativa ndo mais ao estatuto de
realidade ou de ficcdo dessas entidades, mas a modalidade atrelada a esse
estatuto. A distincdo aristotélica entre infinito em poténcia e em acédo permanente
também pertinente tanto as ficcdes quanto as entidades reais. Os infinitesimais
sdo nocoes, as vezes, ideais, visto que sem referentes na realidade sensivel e
potenciais, a medida que representem processos de crescimento ou
decrescimento, tendendo a um limite jamais alcancado. Bolzano vai tentar
reverter, com muita convicgdo e mais ou menos de bom grado, esses dois artigos
da doutrina do infinito. Nos “Paradoxos”, defende as seguintes idéias: 1) o infinito
€ um conceito também “objetual”, isto €, tdo pouco vazio ou contraditério quanto
agueles de numero inteiro, fracdo ou grandeza irracional, donde, pela primeira vez
de maneira tdo limpida, um mesmo estatuto l6gico para o finito e para o infinito; 2)
o infinito existe matematicamente no modelo “atual” e ndo somente “potencial”
(exemplo geométrico simples, uma reta infinita), que decorre um mesmo estatuto
l6gico para o finito e para o infinito; 3) esta atualidade se verifica tdo bem nos
exemplos de coisas néo reais, Como 0 espaco e o tempo, como nos dominios dos
seres, Deus por certo, mas também as criaturas: “mesmo no dominio do real, nés
encontramos por toda parte o infinito” (8 25) — e a identidade de estatuto

ontolégico do finito e do infinito.

Bolzano, o defensor do infinito

Nascido em Praga em 5 de outubro de 1781, Bernard Bolzano é, como seu
mestre Leibniz, filosofo, te6logo, matematico, l6gico e fisico. Deve sua formacao
tanto aos professores da Universidade de Praga, onde entra em 1797, quanto as

suas leituras pessoais. E, quanto a filosofia, estuda Gottfried Wilhelm Leibniz, de
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quem ¢€ filosoficamente préximo, e Emmanuel Kant, do qual se opde
constantemente. Em matemética, seus estudos vdo desde Os Elementos de
Euclides (sobretudo o 5° livro, consagrado a teoria das proporcdes) aos tratados
de Abraham Kastner, as obras de Leonhard Euler e as memorias de Joseph-Louis
Lagrange. E particularmente impressionado pelas Anfagsgrunde de Mathemtik de
Kastner, porque o autor tem o cuidado de demonstrar proposi¢cdes geralmente
tomadas como evidentes. Conta, em sua Autobiografia, que abrindo ao acaso o
manual de Kastner, deparou-se com uma pagina com linhas indicadas por
asteriscos que despertaram sua curiosidade para o estudo da matematica,
pensando encontrar aquilo que perseguia, sem éxito, na filosofia, desde ha muito
tempo. Kastner demonstra ai a base de um saber comum onde todo mundo é

concorde, sem se deter.

Em abril de 1805, obtém a cadeira de Filosofia da Religido na Universidade
de Praga, e € durante este primeiro periodo que escreve os cinco livros de
matematica (B 1804; B 1810; B 1816; B 1817a; B 1817b) publicados enquanto
vivo. A partir de 1815, € membro ativo da Sociedade das Ciéncias de Boemia, ha
qual os Berichte und Abhandlungen contém 34 conferéncias e 7 memodrias

publicadas.

Afastado de sua cadeira em 24 de dezembro de 1819 por “ndo ortodoxia”
religiosa e politica, passa os ultimos vinte oito anos de sua vida numa solidao
ativa, preenchendo milhares de paginas com suas reflexdes sobre assuntos que
vao da légica a sociologia, passando pela matematica, fisica, filosofia, religido,

etc.

Escreveu durante essa “aposentadoria” forcada, os quatro volumes da
Wissenschaftslshre (B 1837), que contém algumas idéias fundamentais da l6gica
moderna. Realiza também, a partir de 1830, a redacdo de um vasto tratado sobre

0 conjunto das matematicas, destinado tanto a elucidar os fundamentos como em
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expor os seus diferentes ramos: aritmética, algebra, geometria, teoria das
funcdes, etc. Morre em 18 de dezembro de 1848, antes de té-lo terminado, mas
nao sem ter tentado publicar algumas de suas partes, notadamente aquelas
relativas a geometria (B 1843a). “Os Paradoxos do Infinito” sdo a ultima
testemunha desse esforco, gracas a F. Prinhonsky que localiza seus manuscritos
na Biblioteca Nacional de Viena em 1851 e edita-0os. Os demais escritos
teologico-filosofico-fisicos somente foram descobertos nos Arquivos do Museu de
Literatura Tcheca, em Praga, a partir de 1920, depois que Jasek identificou o que
seria publicado sob o titulo Functionenlehre, que continha o famoso exemplo de
uma fungéo continua em todos os pontos e nao derivavel em nenhum deles e que
K. Rychlik tivesse empresariado a dupla edicdo germano-tcheca das obras de

Bolzano (B 930-1948), chamando a atencéo sobre os trabalhos aritméticos.

ApoOs 1969, a publicacdo da obra integral de Bolzano € assumida por Jan
Berg, Friedrich Kambartel, Jaromir Louzil, Bob Van Rootselaar e Eduard Winter
na Gesamtausgabe [B 1969]. HA4 de se considerar que a coeréncia interna dos
“Paradoxos” é mal conduzida sob certos pontos. E evidente que o texto ndo se

encontrava num estado de perfeicdo irretocavel, principalmente pela notacéo, que

ndo obedecia principios fixos (por exemplo: no § 37, escreve-se 3y*.Ay com um
ponto indicando a multiplicagdo, enquanto, em 3y Ay“néo ). Alias, sabe-se que
Prihonsky, seu editor, ndo tinha conhecimentos matematicos suficientes e
reconhecera em seu prefacio ter tido dificuldades em decifrar a escrita de
Bolzano. Porém, a experiéncia aponta para a necessidade de se colocar em
suspeicdo a autenticidade do texto ou desprezar passagens que ndo combinam
com o restante da obra de Bolzano. E conhecido o problema da nota do § 37,
julgada, a principio, apdcrifa, em razao de sua suposta contradicdo com o famoso
exemplo da Functionenlehre [B 1930], de uma funcdo continua ndo derivavel em
cada ponto de seu intervalo de definicdo.Van Rootselaar chamou a atencdo, em

sua edicao dos “Paradoxos”, sobre o fato do raciocinio de Bolzano, nesta nota, s6
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se aplicar as funcbes determinaveis, isto €, monotonas por partes, 0 que torna a

nota, incriminada, perfeitamente aceitavel.

Somente os “Paradoxos” ndo dao uma justa idéia da genialidade
matematica de Bolzano. E necessario ao menos citar, Der binomische Lerhrsatz
[B 1816], Die drey Probleme [B 1817b], Rein analystischer Beweis [B 1817a],
publicados em vida e as duas obras publicadas por K. Rychlik: Functionenlehre [B
1930] e Zahlentheorie [B 1931]. Mas, é sem duvida, os “Paradoxos do Infinito” o
livro o mais conhecido do grande publico, por causa da fascinacéo perene pelo
tema e dos elementos precursores da teoria dos conjuntos que contém. Georg
Cantor, justamente, o tinha por “uma bela e rica obra” e seu autor “0 mais

decidido defensor do infinito propriamente dito”.

Como bem exprimiu Hilbert no inicio de seu artigo sobre o infinito, a analise
classica esta parcialmente ligada a teoria dos conjuntos de Cantor, a qual
consagra o uso matematico do infinitamente grande “atual’. A definicdo rigorosa
dos numeros reais que os fundamentam, exige de fato a consideracédo do objeto
infinitamente grande “atual” como o conjunto de todos 0s nimeros racionais ou as
classes das sequéncias de Cauchy. Nao é, portanto, um acaso se Bolzano (antes
de Cantor e de outros) trabalhasse, as vezes, numa teoria dos nameros reais —
nao esquecamos que ele se interessava particularmente, em Euclides, pela teoria

das proporcdes — e pela matematizacdo do conceito de conjunto infinito.

O “verdadeiro infinito”

Nos “Paradoxos” de Bolzano encontra-se uma doutrina do infinito cujos
aspectos matematicos, fisicos e metafisicos se complementam. Essa “harmonia”,
mais perfeita que em Leibniz no qual h4 a disjuncéo entre o infinito na doutrina

matematica e na doutrina da natureza, ainda é preservada na composi¢cao da
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obra, que procede de uma hierarquia, pois 0s aspectos matematicos comandam
os dois outros: elucidar o conceito matematico de infinito do infinito permite
resolver trés importantes questdes fisicas ou metafisicas e nos prepara, a saber
“0 que é o infinito em geral”. Da matematica abstrata, que € uma Zahlenlehre, a
metafisica, os “dois dominios essenciais de nosso conhecimento a priori (B 1810
8 9, p. 18), ha um caminho continuo, passando pela geometria (Que é uma

matematica aplicada) e pela fisica.

E o mesmo conceito de infinito que se realiza numa seqiiéncia infinita de
nameros, num segmento de reta, num intervalo de tempo, nos diferentes graus do
ser ou da acdo das forcas. A matematica abstrata servira, portanto, de
propedéutica ao exercicio de um pensamento direto nos outros dominios. A
metafisica do infinito serd estabelecida sob um prisma matematico, o que nao
impede, sem duvida, a analise matematica de ser orientada por motivaces
metafisicas. Dai a triparticdo dos “Paradoxos”: 1) Apos a introdugcdo do conceito
de colecédo, de conjunto e de pluralidade, Bolzano analisa os paradoxos dos
conjuntos infinitos e cré ter uma prova da existéncia de um conjunto infinito;
esquematizando também um calculo do infinitamente grande no interior do calculo
infinitesimal. 2) Estdo examinados nesta obra os paradoxos da geometria a qual,
Nao Nos esquecamos, € uma matematica aplicada, que objetivam uma definicdo
do continuo. 3) Das 185 paginas do “Paradoxos”, 10 sdo reservadas para a
exposicao da concepcdo de Bolzano sobre a matéria, dos corpos fisicos e de

suas intera¢cdes mutuas.

N&o se encontra na primeira parte dos “Paradoxos” nenhum dos teoremas
que nos ensine a teoria dos conjuntos. Mas, Bolzano tem o incomparavel mérito
de nele introduzir o conceito de conjunto infinito e de dar uma legitimidade
matematica ao infinito atual, o “verdadeiro infinito”. O que impedia os matematicos
de abordarem de frente o verdadeiro infinito? As dificuldades nas quais se

mesclavam as justificativas do calculo dos infinitamente pequenos, essas
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quantidades “gue se esvaem”, “fluentes” entre “nada” e “qualquer coisa’ que
Bolzano evoca em trés paragrafos dos “Paradoxos”. Ele sabia, desde longo
tempo, no que concerne o infinitamente pequeno, que um perfeito rigor pode ser
ganho por procedimentos analiticos. Com Cauchy e Weirstrass, Bolzano €, de
fato, o pai da “aritmetizacdo” da Analise, isto €, do método que consiste em
repudiar as ilustracées ou descricdes geomeétricas da continuidade das funcdes
em prol de uma definicdo na qual sé consideram 0s numeros e as operacdes
racionais, assim como as inequacdes algébricas. Este feito o faz, portanto, um
dos matematicos que contribuiram em eliminar os infinitamente pequenos da
linguagem da Andlise. Esta “extraordinaria sinfonia do infinito” é, na realidade,

muda sobre os infinitesimais.

N&o ficaremos, portanto, admirados em ver Bolzano saudar aqui, a notacao
inventada por Lagrange para as funcdes derivadas e insistir sobre sua vantagem:
supor que as funcbes tém derivadas torna inatil supor que “as grandezas
intervenientes no célculo possam vir a ser infinitamente pequenas”. Mas, o que se
pode inferir desse sucesso numa obra de defesa do infinito? Simplesmente que o
infinito ndo € fonte de contradicho em matematica, pois os paradoxos das
quantidades inconscientes se dissipam em favor de conceito e de notacao
adequada. Nao se pode generalizar e mostrar por uma elucidacdo do proprio
conceito, de uma outra forma abstrata, que englobe todos os casos (tanto aqueles
do infinitamente grande como aqueles do infinitamente pequeno) e que percorra
todas as ciéncias, da matematica a metafisica, de forma que a contradicdo dos
paradoxos matematicos do infinito seja apenas aparente. Isto possibilita o
direcionamento de uma doutrina positiva do infinito, isto e”, uma doutrina na qual

se olhe o infinito “de frente” e ndo somente como o inverso do finito.

Admitir apenas o infinito potencial € determinar o infinito pelo finito, como
aguele que nado se alcanca ou ndo se esgota jamais. Admitir apenas o infinito

potencial € mesmo, de fato, ndo sair do finito. Isto € manifesto para o infinitamente
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grande. Como Bolzano escreveu claramente, “uma grandeza suscetivel de ser
sempre tdo grande quanto se queira e de tornar-se maior que toda grandeza
(finita) dada, pode apesar de tudo permanecer constantemente finita, como é o
caso, em particular, de toda grandeza numérica 1, 2, 3, 4,...." (§ 11). E preciso
considerar grandezas verdadeiramente infinitas, quer dizer, “maior que um
namero qualquer de unidades” ou “tdo pequena que todo multiplo delas mesmas
fica inferior a unidade”. Notar que, do ponto de vista ldgico, trata-se de uma
simples inversdo de quantificadores. Mas, esta inversdo aceita, acarreta a
rejeicio do axioma de Arquimedes que propde que, para duas grandezas
desiguais existe sempre um multiplo da menor superior a maior. Bolzano nao
entra nessas consequéncias e ndo menciona, de forma alguma, o axioma de
Arquimedes. Ele vai, antes de tudo, na direcdo da idéia, de fazer admitir
grandezas infinitamente grandes ou infinitamente pequenas. Esta idéia pressupbe
que considere conjuntos infinitos como totalidades acabadas e ndo mais como
sucessdes nao finitas. Nada se opde logicamente a isso, tdo logo que se admita
que um conjunto infinito possa ser definido, ndo pela enumeracdo de todos o0s
seus elementos, mas pelo dado de um “conceito”, isto €, 0 dado de uma ou varias
propriedades caracteristicas. (Esta reivindicacdo viria a ser uma das “leitmotive”
da futura matematica abstrata: Dedekind, Cantor, Hilbert, etc.). Do ponto de vista
conceitual ou abstrato, nada impede considerar o verdadeiro infinito, o infinito

atual.

Geralmente, Bolzano ndo se contenta em argumentar a favor dos conjuntos
infinitos atuais, chegando a dar uma determinacdo intrinseca: todo conjunto
infinito pode ser posto em correspondéncia biunivoca com uma de suas partes
proprias (ou um conjunto bijetivamente equivalente a ele). E a descoberta
fundamental dos “Paradoxos”. Se Bolzano néo tira dai todo o partido possivel,
nem por uma definicAo de um conjunto infinito como o faria Dedekind, nem em

sua tentativa do célculo infinito, a qual estaria bem longe de prefigurar a
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numeracao transfinita de Cantor, ao menos, lhe coube o resultado do mérito de
sua criacdo epistemoldgica. Até ai, sé os tedlogos tinham um conceito positivo do
infinito, quer dizer, acordavam ao infinito uma anterioridade de direito em relacdo
ao finito. Doravante, os matematicos poderiam fazer o mesmo, sem crerem
(como D’Alembert) na invasdo das matematicas pela metafisica, nem se
protegeriam (como Leibniz ou Gauss) sob a idéia de um simbolismo
representando objetos ficticios. Bolzano nao pretende menos, alids, quer provar a
existéncia de um conjunto infinito. Qualquer que seja a falha — reconhecida longo
tempo apds e nao por um espirito como aquele de Dedekind — desta prova tem o
mérito de ser de natureza l6gico-matematica e ndo teoldgica: a objetividade do
conceito de infinito é independente da existéncia de Deus, simples confirmacéo
para ela. E o préprio Deus somente € infinito porque ha “pontos de vista sob os
quais nés percebemos n’Ele uma pluralidade infinita, e que é justamente e
somente sob um desses pontos de vista, que nés Lhe atribuimos a infinitude” (8

11).

O infinito quantitativo

Influenciado pela combinatéria de Leibniz e sua analise da relacdo de
semelhanca, Bolzano concebe de inicio a matematica como “ciéncia geral das
formas” mais que. “ciéncia das grandezas”. “Os Paradoxos”, ao contrario, definem
a matematica como ciéncia das grandezas e apresentam a atividade dos
matematicos como devotada quase exclusivamente a determinacdo numeérica das
grandezas em fungdo de uma unidade homogénea a elas, quer dizer, devotada
ao calculo e a medida. Esta reviravolta ndo era nova a época da redacdo dos
“Paradoxos”, pois Bolzano empreende em torno de 1830 sua grande obra
matematica sob o titulo Grossenlehre e comeca por explicar sua definicdo. Aqui,

ela € concorde com a vontade de subtrair o conceito de infinito as especulacdes
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dos filésofos, ao menos daqueles que, como Hegel, véem ai uma determinacao
puramente qualitativa, ou daqueles que, como os céticos, buscam fazer ver por
toda parte contradigdes. E necessario adotar um ponto de vista quantitativo para
mostrar a positividade do infinito, seu carater diferenciado e a precisdo com a qual

pode-se apreender esse carater.

N&do somente o infinito existe quantitativamente, mas ainda ha varios
infinitos diferentes uns dos outros, e mesmo, uma infinitude de infinitos. Mais que
isso, € uma Uunica coisa afirmar a existéncia do infinito e sua multiplicidade.
Leibniz, que tanto fez pelo progresso do célculo infinitesimal como dirigiu
diferentes ordens de infinitamente pequenos, supunha dever manter a unicidade
no dominio do infinitamente grande que gerava um absurdo: se houvesse um
namero infinitamente grande, ele seria o maior numero; conclusdo: ndo ha
namero infinito. Bolzano, entdo, descobre que a condicdo de existéncia do infinito
esta na “multiplicidade”, isto &, “inerente ao seu conceito”. Desde que vOs estejais
de acordo, argumenta Bolzano (8§ 29), com a existéncia das pluralidades infinitas,
vOs sois obrigados a reconhecer também a existéncia de pluralidades infinitas
distintas por suas grandezas. Sao necessarios diversos infinitos para estabelecer
a existéncia positiva do infinito simplesmente; o infinito Unico leva a contradi¢des,
mas multiplos infinitos nos fazem escapar do paradoxo do maior infinito. Ora, de
fato, nada € mais simples que exibir conjuntos infinitos distintos. Como no finito, o
namero 6 ndo se confunde com o nimero 3, da mesma forma, se dois pontos a e
b estdo situados sobre uma semi-reta (infinita) orientada ox, de sorte que ao < ob,
entdo nao ha razao para confundir as semi-retas (infinitas) ax e bx: ax ultrapassa
bx pelo segmento ab. Mais geralmente, “todo conjunto infinito, e ndo somente
aguele dos pontos de uma linha, pode ser decomposto em partes que contém,
nelas mesmas, conjuntos infinitos que podem ter uma infinidade de tais partes” (8
38). Bolzano estabelece uma certa simetria entre o finito e o infinito, mas uma

certa simetria somente, pois todo o problema para os infinitos esta em encontrar
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um meio de os comparar, isto €, de definir para eles uma relacdo de igualdade e
uma relacdo de ordem. Qualquer que seja a dificuldade desse problema, coloca-
lo implica a adocdo de um ponto de vista quantitativo. O infinito do matematico &
claramente um infinito quantitativo, que tem forcosamente a ver com as
grandezas e as pluralidades. Mas, 0s conceitos matematicos sdo normativos para
outras disciplinas. E, portanto, em geral, que o infinito € quantitativo: “tudo o que
nos temos por infinito ndo é sendo porque nds percebemos nele um carater
suscetivel de ser relacionado a uma pluralidade infinita” (8 10). Em particular, o
infinito do filésofo é quantitativo. “O que eu ndo admito, escreveu Bolzano, &
simplesmente que o fildsofo conheca um objeto ao qual possa atribuir o predicado
de infinitude sem ter antes mostrado que este objeto €, por um de seus aspectos,
uma grandeza ou, ao menos, uma pluralidade infinita” (§ 11). Da mesma forma o
infinito do tedlogo: mesmo a Deus nés s6 Lhe atribuimos a infinitude porque Ele

tem capacidades em que cada uma delas tem uma grandeza infinita.

Assim, finito e infinito sdo dois caracteres dos conjuntos, das pluralidades e
das grandezas. Eu denomino conjunto uma cole¢do a qual noés imputamos um
conceito tal que, o arranjo das partes seja indiferente (no qual nada de essencial
possa ser alterado para nos, desde que s6 o arranjo seja modificado); e eu
denomino pluralidade A um conjunto no qual todas as partes sdo consideradas
como unidades de uma certa espécie A, isto é, como objetos subordinados ao
conceito A. E o que é uma grandeza? “Uma totalidade, na medida em que é
constituida de varias partes iguais ou, mais geralmente, uma totalidade que possa
ser determinada pelos numeros” (B 1810 p. 13). Conforme a definicdo euclidiana,
0s numeros sao pluralidade de unidades, quer dizer, multiplos de 1. Bolzano
considera também as grandezas como elementos de tipos de objetos, cada tipo
sendo totalmente ordenado pela relacdo de incluséo: duas entidades do mesmo
tipo sdo sempre comparaveis, pode-se dizer se elas sdo iguais e, sendo, qual é

maior que a outra. Esta segunda definicdo, mais tardia, parece ser mais ampla
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que a primeira. Ela tem a vantagem de deixar lugar a uma distingdo entre nimero
e grandeza: uma grandeza nao € forcosamente determinada por um nimero nem,
a fortiori, por um namero inteiro, se € que Bolzano distingue — 0 que ele nunca
chega a dizer — entre nimero e numero inteiro. Na perspectiva dos “Paradoxos”, a
distincao entre nimero e grandeza, ou a possibilidade deixada aberta de que uma
grandeza seja determinada, ndo forcosamente por um ndamero, é muito importante

por no minimo duas razoes:

1. Ela permite definir as grandezas infinitamente grandes como aquelas que sao
maiores que todo numero qualquer de unidades, isto €, aquelas as quais todo
conjunto finito de unidades ndo constitui sendo uma parte, e as grandezas
infinitamente pequenas como aguelas as quais todo mdultiplo fica inferior a

unidade. Apos essa definicdo, as grandezas infinitas sdo aquelas as quais nao

. . ~ 1 . .
se pode nomear nimeros inteiros n (nem fracdo — ), por maior que seja n. Os
n

numeros inteiros sdo grandezas; sdo grandezas finitas, mais precisamente
pluralidades finitas. Mas ha mais grandezas que numeros. De fato, as
grandezas compreendem as fracbes (grandezas racionais), 0S irracionais
(algébricos ou nao) denotados pelas expressoes J2,meetc. mais as
infinitamente grandes e as infinitamente pequenas. Observemos bem que os
irracionais como+/2ou7rm ndo sao grandezas infinitas, mesmo sendo suas
expressdes compostas de um conjunto com infinitas partes. Voltaremos
posteriormente a compreensdo desta dualidade que faz certos objetos
matematicos finitos e infinitos segundo o ponto de vista sob o qual eles séo
considerados. Mas, 0 que € necessario ressaltar bem marcar aqui € que as
grandezas compreendem: 1) os numeros inteiros ou pluralidades finitas; 2) as
grandezas finitas que ndo sdo numeros: fracdes e grandezas irracionais; 3) as
grandezas infinitas, que sado, portanto aquelas as quais ndo se podem nomear
nem um numero inteiro, nem uma fracdo nem uma expressao irracional.

Temos, assim, duas definicbes para as grandezas infinitas, estas e aquelas

56



que demos primeiro. E que a idéia de grandeza infinita pode ser apreendida
sob um duplo ponto de vista de conjunto: uma grandeza infinita € um todo no
gual todo conjunto finito € uma parte; e aritmética, uma grandeza infinita que

nao se exprime por nenhuma expressao inteira, racional ou irracional.

Ha, no entanto, uma dualidade de um outro tipo na idéia de grandeza. Mesmo
a idéia “matematica” de nimero comporta um aspecto concreto e um aspecto
abstrato que se duplicam em numero-objeto: 0 1, 0 2, o 3, etc. da aritmética
elementar, e em um conceito, o de numero inteiro. Mesmo a idéia de grandeza
consiste numa parte das grandezas-objeto e, de outra, uma propriedade ou
um conceito. Mesmo que as grandezas matematicas concretas se repartam
em varios géneros, a extensao do conceito de grandeza constitui um conjunto,
0 conjunto das grandezas, mais precisamente o0 conjunto das grandezas
abstratas. E, por isso, h4 mais grandezas que numeros, o conjunto das
grandezas é maior que o conjunto dos numeros. Diriamos, em linguagem
atual, que além dos numeros inteiros, esse conjunto compreende 0 que
chamamos de numeros racionais, numeros irracionais e, enfim, os
infinitamente grandes e os infinitamente pequenos. Em outros termos, o
conjunto de numeros constitui uma extensdo do conjunto dos numeros reais
(que compreende os inteiros, as fragcdes e 0s irracionais). com 0 acréscimo

dos infinitamente grandes e os infinitamente pequenos.

A distincdo entre numero e grandeza, que permite conceber grandezas
infinitas, e evitar o paradoxo do maior niamero de todos 0s nameros, é também
aquele que impede Bolzano de conceber “nimeros infinitos”. Se o conceito de
namero pudesse ser ampliado de maneira a compreender tdo bem os
nameros finitos (os elementos de N), como os numeros ndo finitos (ndo
pertencentes a N), agora poder-se-ia como o faria Georg Cantor, atribuir ao
conjunto dos elementos de N o primeiro cardinal transfinito, denotado por .

Invocamos esse resultado posterior aos “Paradoxos” para mostrar que
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Bolzano n&o concebe a extensdo do conceito de numero ao dominio do
infinito: aquilo que “ndo deve chamar nimero” ndo € um numero. Nao mais
gue em Leibniz ndo ha para ele nimeros infinitos — mesmo ao plural —, mas
somente pluralidades e grandezas infinitas que, por definicho, ndo sao
determinadas pelos nuameros. A idéia de numero (cardinal) infinito €
contraditoria, mas a de grandeza nao €. Ha grandezas infinitas e essas dao
lugar ao conceito de grandeza infinita, portanto, a um conceito de grandeza
mais geral que o de niamero (0s numeros sédo grandezas, mas a reciproca é
falsa). Se a Reine Zahlenlehre [B 1976] fala da “expressdo de numero infinito”
e de “conceito de numero infinito” como do que corresponde, por exemplo, a
soma da série dos numeros naturais: 1+2+3+..., nos “Paradoxos”, & acusado
de modo radical a disjuncdo entre niumero e grandeza, ndo se autorizando,
nem mesmo indiretamente, expressdes compostas como Zahlenausdruck ou

Zahlenbegriff, a associacdo entre os termos “numero” e “infinito”.

Na falta de estabelecer as grandezas infinitas um nimero, ao menos, pode-
se eventualmente |hes assegurar um valor. Bolzano diz agora que elas séao
determindveis ou mensuraveis. A existéncia de grandezas infinitas mensuraveis
prova bem que ndo é absolutamente necessario assimilar, como se fazia numa
concepcao negativa, o infinito ao indeterminavel. O exemplo mais corrente para
ele de tais grandezas infinitas € aquela de uma série convergente, por exemplo, a
série geomeétrica de razdo e< 1. Este exemplo permite perceber a necessidade de
dissociar dois pontos de vista: aguele no qual se considera o conjunto infinito de
termos da série e aquele em que se tenta calcular a soma desses termos, que, no
caso de uma série convergente, é finito. Em resumo, ao lado do ponto de vista
aritmético ordinario do calculo das séries, ha o ponto de vista de uma aritmética

dos conjuntos no qual Bolzano introduz o conceito.
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Enquanto tal, o conjunto infinito dos termos de uma série ndo € numeravel
e ndo pode ser denotado por um namero infinito. Pode somente ser “figurado” por
um simbolo literal: assim N° “figura” o conjunto de todos os nimeros naturais, e
por N° é necessario entender uma soma imprépria, pois infinita, a “soma infinita”

de termos todos iguais a unidade. Dessa forma, Bolzano escreve explicitamente:
NO=1°+ 2% 3%+ .+ n%+ (n+1)° + ... = 1+1+1+ ...

E bem uma soma particular na qual todos os fatores s&o iguais a unidade e
que figura a “pluralidade” associada ao conjunto infinito dos inteiros naturais. Ha
outros exemplos de “somas infinitas” reconhecidas por Bolzano como somas — e
nao como pluralidades — apesar do carater divergente da série que representem.
Por exemplo, 1 + 2 + 3 + 4 + ... as quais sao, para ele, somas “simbdlicas”, pois
considera, de fato, a sequéncia dos fatores assim adicionados, eles préprios,
como uma notacdo e somente como uma notagdo, uma expressdo ou uma
representacdo de grandeza a qual ndo é certo, a priori, que corresponda
verdadeiramente a uma grandeza e ndo sao nada (“nenhum objeto”, como diz
Bolzano), nem, no caso em que corresponda a uma grandeza que seja
determinavel ou mensuravel. Em termos modernos, dizemos que somente se a
expressado considerada como a seérie que tem um limite, finito ou infinito,
representa uma grandeza. As seéries que nao tém limite, por exemplo, as
alternadas do género: 1 — 1 + 1 — 1 + ... ndo representam nenhuma grandeza,
pois sdo expressOes vazias ou “sem objeto”. As séries que tém um limite
representam, portanto, grandezas. Trés casos se apresentam: 1) Essas
grandezas podem ser finitas, quer dizer, determinadas de maneira exata por
nameros inteiros, fracionarios ou irracionais. E o caso da série geométrica de
razdo e< 1, exemplo de uma “expressao infinita de grandeza” representando uma
grandeza finita. 2) As grandezas representadas por expressoes infinitas podem
também ser mensuraveis, quer dizer, podem ser expressas de maneira

aproximada por numeros inteiros, fracfes ou grandezas irracionais. Por exemplo:
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-
1+1+1+1..

€ uma expressao infinita que representa uma grandeza vizinha do
zero, portanto, mensuravel. Em resumo, a uma expressdo constituida de um
conjunto infinito de termos, pode-se corresponder ou ndo, de maneira exata ou
aproximada, uma grandeza finita. E a nocdo de medida aproximada implica, as
vezes, as grandezas finitas e as grandezas infinitas. O exemplo de Bolzano é,
vale destaque, aquele de um infinitamente pequeno e os infinitamente pequenos
Ihe sdo considerados grandezas comensuraveis e, portanto, torna-se um conjunto
mais rico que nosso conjunto dos numeros reais. 3) Enfim, as grandezas
representadas por expressoes infinitas podem néo ser mensuraveis: € o caso da
soma da série dos numeros naturais “1+1+1+...in inf.” e, mais geralmente, de
todas as somas de seéries divergentes. Posteriormente, mencionaremos as
diferencas ou as relagdes finitas entre grandezas infinitas. Assim, Bolzano
abandona o problema, de numerar um conjunto de termos “inumeravel” e se volta
para o calculo das somas das séries convergentes, que correspondem, em sua
linguagem, a grandezas finitas. Isto o faz abandonar o terreno do verdadeiro
infinito, infinito atual e deixar de apresentar o conceito de numero (cardinal)
infinito. Mas, mostra-se-lhe a dupla face de certos objetos matematicos: uma face
finita e uma face infinita. De fato, e de maneira analoga ao que ocorre com as
séries convergentes, todo segmento de reta € infinito, do ponto de vista do
conjunto de seus pontos; finito, do ponto de vista de seu comprimento; mais
geralmente toda expanséo espacial da lugar, por um lado, a consideracdo do
conjunto de seus pontos, e por outro, a uma operacdao de medida. Geralmente,
Bolzano faz a distincdo entre as duas ordens de consideracdo, quando da o
exemplo de uma grandeza infinita ou de uma grandeza infinita “determinavel”: um
segmento de reta, infinita pelo conjunto de seus pontos, ndo lhe é perfeitamente
determinavel pelo dado de suas extremidades? Infelizmente a confusdo se
estabelece desde que se comparem infinitos distintos sobretudo aqueles para os

guais exista um ponto de vista sob o qual lhes corresponda, de modo exato ou
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aproximado, uma grandeza finita ou um sistema de grandezas finitas (o par de

extremidades de um segmento de reta no plano cartesiano).

Calcular no infinito

1. O caso dos infinitos indetermindveis € facil de dominar. A célebre série
alternada: 1-1+1-1+1-1+..., oferece o exemplo de uma expressao de
grandeza infinita “sem objeto”, ndo correspondente a nenhuma grandeza.
Indeterminavel €, portanto, um infinito em si indeterminado. Hoje, dizemos que
esta série néo tem soma, a sequiéncia o, das somas parciais S; =1, S, =1-1,
S; =1-1+1,...,S, =1-1+1+...-1+1,... ndo tem limite, dado que as somas
parciais valem tanto 1 (se elas tém indice impar), quanto O (se elas tém indice
par). Bolzano estabelece em sua propria linguagem, a de uma ontologia

realista, esse caso de grandeza infinita indeterminavel.

2. Mas, suponhamos que desejassemos comparar, como Galileu tinha ja tentado
fazer, as sequéncias infinitas, que correspondem a grandezas infinitamente

grandes:

S]_ =1, 2, 3, 4, ...
S,=12, 22,32, 4%, ...

S; contém evidentemente todos os elementos de S, e ainda, uma infinidade de
elementos que ndo pertencem a S;; 0 conjunto dos elementos de S, é,
portanto, um sub-conjunto préprio do conjunto dos elementos de S;. Ora, cada
inteiro natural, tendo um quadrado e reciprocamente cada quadrado sendo o
guadrado de um inteiro natural, existe uma bijecao entre o conjunto S; sobre
S,. Apés ter sido tentado a dizer que ha tantos quadrados quantos inteiros
naturais em virtude da correspondéncia um a um, Galileu se deteve na idéia
de que as relagcdes de igualdade e de ordem nao podiam caber entre
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conjuntos infinitos; ndo se podia, portanto, comparar conjuntos infinitos e a

correspondéncia um a um consistiria num paradoxo do infinito.

Bolzano considera a correspondéncia um a um ndao como um paradoxo, mas
como uma caracteristica dos conjuntos infinitos. Estd ai sua grande
originalidade em relacéo a todos os seus precursores. E mais, ndo hesita em
se fundamentar na existéncia de uma tal correspondéncia para afirmar que,
eles tém o mesmo conjunto de elementos. Do ponto de vista do conjunto de
seus elementos, esses dois conjuntos representam o mesmo infinito, mesmo
gue o segundo seja uma parte propria do primeiro. Por sua vez, Bolzano
admite, contra Euclides, Aristételes e toda tradicdo, que ha um ponto de vista

no qual a parte é igual ao todo.

3. Bolzano nem sempre exalta os paradoxos. O exemplo da bijecdo dos inteiros
naturais e o conjunto de seus quadrados, donde ele conclui, a primeira vista, a
identidade dos conjuntos considerados, constitui um texto dos “Paradoxos”,
no 8 20, onde aparece de inicio essa propriedade. Seu argumento, ao
contrario, diz que conjuntos em correspondéncia biunivoca podem ter entre

eles “ as mais variadas relacbes de grandeza’. Por exemplo, o conjunto dos

pontos do intervalo [0,5] da reta real € “menor” que o conjunto dos pontos do

intervalo [0,12], pois esta estritamente contido nele. O autor define, portanto,

uma relacdo de ordem por inclusdo estrita, ao invés de construir uma
aritmética do infinito sobre essa relacdo de ordem. A partir disso, preocupa-se
com muitos infinitos diferentes, pois desde que um conjunto esteja contido
estritamente em outro, aquele € “menor” que este. Para que conjuntos infinitos
sejam iguais é preciso, no limite, e Bolzano ndo recua diante desta estreiteza,
que sejam idénticos. Contrariamente a isso que admitimos apdés Cantor, a
bijecdo entre dois conjuntos infinitos ndo é suficiente. Bolzano, ao definir o que

chama da “igualdade perfeita”, ou seja, aquela que tem lugar em condicbes
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parecidas entre conjuntos finitos, salienta que € preciso que a pluralidade dos
termos seja “a mesma” nos dois conjuntos. Isto é enunciado no 8§ 24 como um
teorema; mas o desconsidera no § 33, quando diz que o conjunto dos inteiros
naturais e o conjunto de seus gquadrados sdo 0 “mesmo conjunto”. Van
Rootselaar (carta a Hourya Sinaceur de 18 de novembro de 1991) pensa que
a identidade desses dois conjuntos repousa nao sobre a existéncia de uma
bijecdo entre eles, mas sobre 0os mesmos principios de determinacédo, de
causa. Os termos “namlich”, “derselbe” e “ gleich” séo, alias, utilizados como
absolutamente sindnimos no § 22 e como distintos no § 24. E que a identidade
e a igualdade séo intercambidveis somente no finito. No infinito, Bolzano pde
gue a igualdade perfeita dos conjuntos ndo é assegurada, a ndo ser pela
identidade de suas pluralidades. A correspondéncia um a um pode passar por
uma espécie de igualdade, uma ténue igualdade dos pares. Mas, a igualdade
perfeita é a igualdade das pluralidades, como no finito. A relacéo de igualdade
definida para os conjuntos infinitos é a mais fina possivel, pois se confunde
com a relacdo de identidade. De um certo modo, o infinito matematico nao
escapa mais do principio dos indiscerniveis do que as entidades dos mundos
fisico e metafisico: cada conjunto infinito determina uma grandeza infinita, no
lugar das categorias e das classes de conjuntos infinitos que nos permitem
seriar as grandezas infinitas. Temos, portanto, quantidades ilimitadas de
infinitos diferentes uns dos outros. Esta situacdo, simétrica daquela que
consistia em admitir um Unico infinito, nos conduz a mesma dificuldade: ndo
podemos organizar os conjuntos infinitos em categorias, nem estabelecer o
calculo do infinito atual. Acrescentemos que a razédo da dificuldade é também
a mesma, € o0 axioma “o todo € maior que as partes”, geralmente respeitada

por Bolzano, salvo no § 33, como ja haviamos sublinhado.

4. Mas a pratica do calculo das séries e do célculo diferencial e integral mostra

gue se pode ter um calculo do infinito fundamentado na distincdo de diferentes
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ordens de grandeza no infinitamente pequeno e no infinitamente grande.
Bolzano vai, entdo, procurar uma solucédo por esse lado, pois pensa que é
preciso ter um calculo se se deseja verdadeiramente matematizar o infinito. O
calculo dos infinitamente grande se deduz pela simples inversdo dos
procedimentos do célculo infinitesimal. Esse calculo, ndo considera portanto,
em uma contagem semelhante aqueles que fazemos no finito, “uma contagem
da pluralidade infinita nela mesma”, mas na determinacéao da relacédo de dois
infinitos, exatamente como o fazemos no calculo diferencial e integral. Isso
significa que Bolzano ndo visa uma teoria cardinal dos infinitos, uma teoria de
cardinais infinitos — nem, alids, uma teoria ordinal, pois ndo distingue niumero
cardinal de nimero ordinal. Nao se pode reprova-lo, apesar de néo ter atingido
seu objetivo. Em outros termos, ndo devemos julgar Bolzano do ponto de vista
de Cantor. E certo, mas nés voltamos a pratica existente, que consiste em

pegar do infinito s6 o que se exprime no finito.

4.1. A relagédo entre dois infinitos distintos pode ser finita, caso em que se
pode ser determinado por um numero no sentido de Bolzano, quer dizer
um namero inteiro positivo. Por exemplo, pode-se determinar de maneira
finita a diferenca entre duas somas infinitas.Assim, a diferenca N° - N" = n

onde

NO =19 +2% +3% +_ .+ n%+ (n+1)° +....... e

N" = (n+1)° + (n+2)° + (n+3)% +..........

Bolzano da ainda outros exemplos de “determinacao finita” do infinito:
uma reta é perfeitamente determinada por dois de seus pontos (8 11 e
26). A relacéao das grandezas de dois intervalos, no espago ou no tempo,
€ “puramente finito, perfeitamente determinavel por puros conceitos” (8
27 e 43). E evidente que aqui se trata ndo de uma determinacdo por

numeros finitos (elementos de N), mas por grandezas finitas, isto €, em
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outras palavras, numeros racionais ou reais. Bolzano considera, como
vimos antes, os irracionais entre as grandezas finitas, mesmo sendo elas
constituidas, como /2, de um conjunto infinito de grandezas finitas.
Enseja explicitamente a possibilidade que a razdo de dois infinitos
pudesse ser racional ou irracional. Bolzano fala, portanto, mais
freqientemente, nos “Paradoxos”, da determinacédo finita de um infinito
ou da razao finita de dois infinitos quando se pode atribuir a esse ou
aguele uma grandeza ou um sistema de grandezas inteiras, racionais ou
irracionais. Quando a determinacao é finita, € dito também que ela é
“perfeita” (8 35). Mas € possivel, como ja visto, que ele associe a
determinabilidade a mensurabilidade; trata-se agora de determinacao por

grandezas infinitamente préximas de grandezas finitas.

N&o nos faltou ocasido, alias, de assinalar a dificuldade representada
pelos seguintes conjuntos dos pares de conceitos dos “Paradoxos”
determinavel e mensuravel, perfeitamente (ou completamente)
determinavel e determinavel por puros conceitos, finito e perfeitamente
determinavel por puros conceitos, determinavel por puros conceitos,
perfeitamente determinavel e determinavel por uma razédo finita. Se em
cada par os termos sao sindnimos, como deixa supor a redacdo de
Bolzano, e pode-se fazer jogar a transitividade da redacdo de sinonimia,
entdo é claro que o primeiro par se distingue do conjunto dos outros. De
fato, por transitividade obtém-se neste conjunto: perfeitamente
determinavel = determinavel por puros conceitos = determinavel pelo
finito; enquanto que mensuravel = determinavel mas de maneira nao
perfeita (ndo exata). Dever-se-ia entdo compreender que mensuravel ou
determinavel, de maneira ndo perfeita, equivaleria a ndo determinavel por
puros conceitos? A gquestdo é colocada em razdo das desigualdades

abaixo.
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4.2. Pode-se perceber, claramente, que a razdo de dois infinitos € maior que 1,
sem poder determina-lo precisamente. E o caso das séries, que

representam somas infinitas:

21:1+2+3+4+...
2212 +22+3%+4% +..

Como se pode majorar cada termo de zl.por um termo de 22 e que 0s
conjuntos S; =, 1, 2, 3, 4, ... e S, = 12,2%,3% 4%,... tenham 0 mesmo
conjunto de termos? Bolzano conclui (8§ 33) que o infinito representado pela
soma 22 € bem maior que o representado pela soma 21" em outros
termos, que a razdo entre 22 e zl.é bem maior que 1. Ainda que
zl.e 22 representem, para Bolzano, grandezas ndo mensuraveis, é facil

reconhecer qual dessas grandezas ultrapassa a outra. Sem admitir a nocéao
de soma de uma série divergente, dizemos que 22 diverge mais rapido

que zl.

4.3. A razdo de dois infinitos pode ser infinita. Bolzano da varios exemplos:

0 0
aquele das grandezas indicadas pelos simbolos@\l ge Q\I §(§ 29); aquele

das séries 22 e zl., cuja razao é evidentemente maior que 1, e que

Bolzano se esforca em mostrar que € infinita, ndo chegando a precisar a
ordem de grandeza deste infinito — poder-se-ia esperar esta precisao, pois
Bolzano repete suficientemente que ndo ha um infinito, mas uma infinidade
de infinitos. Um terceiro exemplo € o do segmento que contém um conjunto
infinito de conjuntos infinitos de pontos (8 49). De forma mais geral, “todo
conjunto infinito pode ser decomposto em partes contendo conjuntos
infinitos e, pode, ter uma infinidade de tais partes” (8§ 38). Como medir a

infinidade de uma parte infinita em relacéo a infinitude do todo? Dir-se-ia,
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em concordancia com o axioma do todo e da parte, geralmente aceito por
Bolzano, que a primeira € inferior a segunda? Aqui reside o ponto mais
falho dos “Paradoxos”, aquele no qual se percebe que as tentativas de
calculo, mais ou menos coerentes entre elas, malogram ao estabelecer
uma escala que concretizaria, matematicamente, a idéia de que ha, no
infinitamente grande e no infinitamente pequeno, “uma infinidade de ordens
de grandezas” (8§ 30). Isto conduz Bolzano a procurar, por todos 0os meios,
retornar ao finito, tirando partido dos diferentes modos possiveis de
determinacao. Isto é, procurando determinar as grandezas infinitas, senao
numericamente, pois isto ele se proibe, ao menos de uma outra maneira. E
entdo que se introduzem as confusdes, com Bolzano tentando estabelecer
uma aritmética infinita valendo-se de noc¢fes estranhas a aritmética, em
particular nocdes recuperadas da geometria. Conceitos ou razbes metricas:
distancia de dois pontos, comprimento de um segmento, area de um
circulo, triangulos iguais etc., sdo utlizados para tentar determinar
‘conceitualmente”, como diz, de maneira puramente logica, a grandeza de
um infinito ou a razéo de dois infinitos. Além do fato que isto indica que
determinar € determinar segundo a ldgica do finito. Bolzano é acuado a
violar seu proprio principio de estabelecer uma hierarquia das disciplinas
das matematicas, coroada pela aritmeética, aplicavel outras disciplinas, mas
nao constituida a partir delas. Procurando definir uma igualdade dos
conjuntos de pontos, Bolzano recorre, de fato, ao que se chama uma
“igualdade geométrica”, quer dizer, uma coincidéncia total que se traduz
em geometria plana pela superposicao. Isto € bem entendido por todos que
tivessem, de antemé&o, considerado como uma “falta intoleravel” a confuséao
entre aritmética, algebra, analise e matematicas aplicadas, em particular a

geometria.
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O que dizer, em definitivo, desses Paradoxos? Que se encontram na
bifurcacdo da histdria das mateméticas do infinito. Desfiguradas entre as normas
e as praticas, advindas do Calculo Diferencial e Integral, as quais visavam
eliminar todos os tracos dos infinitamente pequenos na expressado analitica de
seus processos e dar um reconhecimento matematico ao infinito atual. Vitimas da
assimetria, instaurada pelos paradoxos na tentativa de anula-la, entre o

infinitamente pequeno e o infinitamente grande.

Se, ndo se chegou a uma aritmética dos infinitamente grandes atuais, ao
menos lhes foram assegurados existéncia matematica e inscricdo em uma escala
quantitativa com diferentes degraus. As expressdes de grandezas infinitamente
grandes ndo sdo jamais vazias, mesmo que cheguemos a representa-las como
grandezas ndo mensuraveis. Seu estatuto, do ponto de vista realista, €, portanto
mais invejavel que o do zero ou o dos imaginarios, entidades puramente

simbolicas!

O infinitamente pequeno tem uma situacdo bem menos clara: existe como
infinito atual e tem tanto de “realidade” quanto o infinitamente grande, e tanto
quanto as grandezas usuais, inteiras, racionais, irracionais. Tao logo, ele é
admitido apenas como infinito potencial e somente para avaliar a razao de dois
infinitamente pequenos. Enfim, diz-se que a hipotese de existéncia de um
infinitamente pequeno € contraditoria. Agora, nos outorgam os meritos do calculo
das derivadas de Lagrange, o matematico mais obstinado em algebrizar os
conceitos da Andlise, ou, em outras palavras, em reduzir o infinito ao finito. Na
sequéncia, alias, Bolzano ndo fala mais sendo de acréscimos finitos de uma
funcdo, quando inicialmente usava a idéia e a expressdao de acréscimos
infinitamente pequenos. Em resumo, todas as proposicbes dos “Paradoxos”
relativas ao infinitamente pequeno ndo sdo logicamente compativeis. Bolzano é
colocado no meio da confluéncia de duas correntes igualmente fortes: a de

constituicdo da Analise classica, como negacdo do infinitamente pequeno, ai

68



compreendida sua forma potencial, e, como rejeicdo da intuicdo geométrica ou
cinematica em proveito dos procedimentos algébricos de calculo; e, a corrente
que fazia irromper, no afd da abstracéo que levava a aritmetizagdo da andlise, os
conjuntos infinitos. Esta disjuncao de estatuto, entre infinitamente pequeno atual e
infinitamente grande atual, Bolzano ndo assumia, explicitamente, como Cantor.
Ele oscila entre uma posicdo ldgica de principio: afirmar simultaneamente a
existéncia dos infinitamente grandes e dos infinitamente pequenos atuais, e a
impossibilidade pratica na qual ele se encontra de anular seus proprios trabalhos,
Rein analytischer Beweis (B 1817 a) e die drey Probleme (B 1817 b), mas
também a Reine Zahlenlehre (B 1976) no qual a “mensurabilidade” repousa sobre
um processo de aproximacao correlata da admissdo de grandezas variaveis
crescentes ou decrescentes indefinidamente, isto é sobre uma concepcéo

potencial denegrida nos “Paradoxos” em proveito de uma concepcéo atual.
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CAPITULO 3

PESQUISAS EM EDUCACAO MATEMATICA SOBRE A
COMPREENSAO DO CONCEITO DE INFINITO

Trés artigos resultantes de pesquisas em Educacdo Matematica sao
analisados neste capitulo: Young Peoples’ Ideas of Infinity de John Monaghan,
Tacit Models And Infinity de Efraim Fischbein e Conhecimentos de Concepcdes
Prévias dos Estudantes Sobre Numeros Reais: Um suporte para a melhoria do
ensino-aprendizagem, de Benedito Silva e Sonia Igliori. A traducdo dos dois

primeiros, do inglés para o portugués, foi realizada por nés.

O artigo de Monaghan

Monaghan descreve uma pesquisa realizada por ele com jovens pré-
universitarios (em geral, com menos de 19 anos) sobre suas percepcbes do
infinito. Nela, evita lidar com noc¢des como a de limite e de infinito na visdo
cantoriana, mesmo assumindo que tal opcdo implicaria em dificuldade. Seu
interesse por esses sujeitos estava exatamente na possibilidade de poder
explorar um senso “puro” do infinito, embora reconhecesse que ninguém é tao
“puro” a tal ponto que suas experiéncias de vida ndo se relacionassem com 0s

significados dos temas a serem tratados.
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Nas quatro secdes do artigo de Monaghan, sdo desenvolvidos assuntos
candentes relativamente a cognicdo e conceito de infinito. S&o abordados:
armadilhas potenciais a que poderiam estar sujeitas as pesquisas em educacao
matematica sobre o infinito; o trabalho de Piaget sobre o assunto; a contraditoria
natureza do infinito; o infinito como um processo e como um objeto; nameros
infinitos. S8o descritas situacfes nas quais idé€ias infinitas possam emergir ou
serem estabelecidas e atividades de pesquisa que busquem entender visdes de
jovens sobre o infinito. As referéncias para o artigo sdo basicamente aquelas que

apresentam estudos empiricos com jovens.

Na seccdo que trata das armadilhas, a principal questdo explorada é como
saber o que significa conceito de infinito. Pergunta-se se ha como inferir que um
primeiro nivel de entendimento possa ser o da percepcdo de processos que
nunca acabam, como por exemplo, a subdivisdo continua de um segmento de
reta, de sequéncias interminaveis de niumeros como a dos numeros naturais ou,
da possibilidade de alguma operacao poder continuar indefinidamente. Ou, ainda,

na percepcao de colecdes néo limitadas.

Um dos problemas, constatado de pronto, € o de como abordar o jovem se
a pretensao € identificar se ele tem um conceito de infinito e se consegue
esclarecer o que € esse conceito. A armadilha a que o pesquisador pode estar
sujeito infere-se no fato do mundo real ser aparentemente finito e,
consequentemente, faltam referéncias reais para um discurso sobre o infinito. O
que, muito provavelmente ele faz, é buscar um contexto do qual nédo faz
necessariamente sentido para o jovem. Se indicar que tal contexto nao faz sentido
para ele ou, se o proprio pesquisador identificar este agrave, isso € bom. No
entanto, para dizer "eu ndo entendo" requer do estudante uma certa confidéncia.
Um perigo real existe quando o jovem nao entende, mas apresenta uma resposta

aparentemente com sentido, ou, quando ele entende alguma coisa distinta do que
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0 pesquisador pretende e o pesquisador ndo identifica essa incompreensao do

jovem.

E evidente, diz Monaghan, que tais problemas n&o s&o especificos de
pesquisas sobre conhecimento de percepcdes de jovens sobre o infinito, mas
reforca ainda sua opinido de que, pesquisas nessa direcdo parecem
particularmente propensas a esses problemas. Relacionado a esse primeiro
problema, expde um segundo que envolve a linguagem utilizada quando se fala
com jovens. Chama a atencédo para o fato de que professores de matematica ou
educadores matematicos ndo véem problemas ao falar que uma série “continua
sempre” ou ainda que, ela “continua sempre e tem uma resposta”, como é o caso
do exemplo da série: 0,1 + 0,01 + 0,001+... Argumenta que iSSO ocorre porgue o
mundo matematico, em que esses professores vivem, é um mundo a-temporal no
qual pode se efetuar sem referéncia, a tempo, uma adicdo com infinitas parcelas.
“Isto, no entanto é estranho e ndo devemos esquecer que é estranho. Isto nédo
ocorre como no mundo real” (2001, p. 240). Inclui no problema de linguagem a
questao de se perguntar, por exemplo: pode-se adicionar 0,1, 0,01, 0,001... sem
parar e obter uma resposta? E, completa: fora do mundo da mateméatica pura, a
resposta € nao porque ndo ha como continuar somando para sempre... ja que se
morre antes. Parece a Monaghan que, Nunes (1994) caiu nessa armadilha
quando formula a jovens de 8 a 14 anos: "imaginem que queiramos ir de um lado
ao outro de uma mesa. Para isso, primeiro vamos até a metade do caminho e
depois, até metade do que sobrou e depois até a metade do que sobrou na
segunda etapa e assim sucessivamente. Nos vamos algum dia atingir o outro lado
da mesa?” (ib. p. 370). Pode ser que Nunes tivesse a pretensdo de explorar o
paradoxo de Zendo, para um treinamento matematico dos jovens, mas o
paradoxo somente existe quando o problema é visto sob dois pontos de vista.
N&do sera um paradoxo para alguém que ndo conhece as complicacdes

matematicas. Em defesa de Nunes, pode-se atribuir o fato de que ele havia
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investigado como criangas de diferentes idades, usavam argumentos finitistas e
infinitistas. Mas, Monaghan julga que aqui pode haver o perigo de interpretacao

dada pelo pesquisador com origem na linguagem que € utilizada.

O trabalho de Piaget, referentemente a natureza contraditoria do infinito,
questionado por Monaghan que considera um dos problemas dos piagetianos o
desejo que tem de ver os conceitos das criancas de forma hierarquica em
estagios, como internamente consistentes mas, de fato, no que tange ao infinito,
muitos dos conceitos que as criancas tém, sdo internamente contraditérios O
ponto de partida para contrapor o paradigma piagetiano, ocorre quando Fischbein
e seus colegas passam a utilizar referenciais tedrico pos-piagetiano tomando a
natureza contraditoria dos conceitos que os jovens tém de limite e infinito, como
fundamental em suas analises. O exame da intuicdo tem um importante papel no
trabalho de Fischbein. Para isso, é preciso que se conceitue o que vai considerar
por intuigdo, por ser, como muitos dos constructos psicoldgicos, muito dificil de se
definir. Ele vai usar o termo intuicdo por algo direto, ou formas de conhecimento
evidentes em si mesmo (Fischbein, 1979, p. 5). A principal hipotese por ele
considerada é que a nossa intuicdo do infinito é intrinsecamente contraditoria,
pois, 0S N0sSsos esquemas logicos estdo naturalmente adaptados aos objetos e
eventos finitos. Evidéncia que é indicada pela larga discrepancia em respostas
entre raciocinios infinitistas (aceitando divisibilidade infinita de uma reta e, em
geral, continuacdo infinita de uma operacdo) e de raciocinio finitista (ndo
aceitando continuacéo infinita de uma operacdo ou usando esquemas logicos
finitos, como por exemplo, o todo deve ser maior que a parte). Os sujeitos
participantes da pesquisa de Fischbein tinham mais idade (470 estavam entre 10
a 15 anos e tinham diferentes niveis de desenvolvimento) do que os de Piaget
(11-12) (1956, p. 125-149) e de Task (1975), (8-12). Fischbein inclui, além das

questbes classicas de subdivisio como as de Piaget e Task, outras sobre
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correspondéncia um a um buscando verificar a existéncia de relacdo entre as

respostas e o desenvolvimento escolar.

Fischbein et al. observam que respostas de carater finitistas e infinitistas
podiam ser norteadas pelo concreto ou por argumentos abstratos (constructos
matematicos). O efeito do ensino variava contribuindo tanto para respostas
finitistas quanto infinitistas, o0 que ndo os surpreenderam, dada a natureza

contraditoéria do infinito.

Para questbes fora de padrdo, para as quais os estudantes nao tinham
informacdes especificas, esperavam altas porcentagens de respostas (erradas)
finitistas, mesmo em detrimento de treinamento geral matematico mais avancado
(e algumas vezes, como um efeito indireto justamente desse treinamento

matematico (ib. p. 37).

Monaghan (1986) investigou visdes dos estudantes ingleses do nivel A
(pré-universitarios, de 16 a 18 anos, alguns estudando matematica nivel A e
outros n&o), sobre conceitos de limite e infinito. O estudo direcionava ao que pode
ser chamado de concepcdes implicitas, em oposicédo a detalhes técnicos, isto é,
ndo concernentes a respostas certas ou erradas e evitou conceitos e notagées
matematicos mais avancados. Os focos especificos incluiram: infinito como
processo e como objeto; infinito como um numero; infinitesimais; sequéncia e
séries infinitas; nameros reais; a linguagem do infinito; raciocinio com o infinito;
contextos (numeéricos/geomeétricos, contagem/medicédo, estatico/dinamico; o efeito
do ensino). Cinquenta e quatro estudantes (27 estudando matemaética nivel A) da
mesma escola responderam um questionario inicial, acompanhado de entrevistas
estruturadas com 13 estudantes. Um questionario, revisado em alguns pontos, foi
subsequentemente aplicado a 190 estudantes nivel A (114 estudante matematica

nivel A) de escola com caracteristica similar a primeira.
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Os principais achados no que se refere as concepcdes sobre o infinito
podem ser resumidos como seguem: o foco primario dos estudantes sobre o
infinito configurava-se numa perspectiva de um processo, algo que continua e
continua. Uma viséo do infinito como objeto era revelada para alguns estudantes,
referindo-se a um numero muito grande ou o reconhecimento de colecbes
contendo mais que algum numero finito de elementos. O conceito de infinito dos
estudantes € inerentemente contraditorio e variavel. O primeiro ano de um curso

de célculo tem efeito desprezivel nas concepc¢des dos estudantes sobre o infinito.

O curso de célculo utilizou, como esperado, conceitos e notacdes
matematicos concernentes com infinito, exemplo, soma infinita com o0 simbolo
(de infinito) sobre o simbolo de somatéria. Monaghan estabeleceu que estaria
preocupado com jovens que nao tivessem sido ensinados como 0os matematicos
lidam formalmente com o infinito. Afirma que ndo considera curso introdutorio de
calculo como “lidar formalmente com o infinito”, embora, € claro, que isto possa
possibilitar aos estudantes, vivenciar experiéncias que contribuam com o
desenvolvimento deles sobre a noc¢éo de infinito. O que é interessante ressaltar €
que essas experiéncias parecem ter tido efeito pequeno sobre concepcdes

implicitas do infinito.

Nesse artigo € evidenciado que, como muitos conceitos matematicos, o
infinito pode ser visto tanto como um processo, como no principio da inducao ou
loopping infinitos na linguagem dos computadores e como um objeto, como um

grande numero ou a cardinalidade de um conjunto.

E importante chamar a atencdo que esta dualidade processo/objeto em
Educacdo Matematica tem se estabelecido num campo de pesquisa. Os mais
recentes artigos sédo Gray e Tall (1994), Dubinsky (1991), Sfard (1991). O infinito
€ simplesmente um, mas, interessantemente, um recente aspecto da matematica

para ser analisado nessa direcéo.
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Monaghan (1986, 280) ainda observa que a linguagem de uma crianga ao
falar sobre infinitude a reflete como um processo: “Isto que continua e continua é
infinito”, vendo infinitude n&o como coisa, mas como o ato de ir continuando e
continuando”. Ndo usam a infinitude como processo apenas para a definir, mas
também como um esquema de validacdo para determinar quando uma questao

tem uma resposta infinita:

Isto continua e continua.
Infinito significa continuar e continuar.
Entéo isto é infinito (adjetivo ou substantivo).

O jovem, as vezes, usa expressdes como “uma infinidade” mas, pode-se

inferir que neste contexto infinidade seja um objeto?

Embora a dualidade processo-objeto esteja aqui apresentada, pode nao
ser bem definida na mente do jovem. Constitui-se um perigo estabelecer fronteira

entre processo e objeto nessa polarizagao.

O jovem usa em outras situacdes o termo infinito, indicando que algo
continua e continua. Os dois termos “infinito” e “infinidade” sao freqiientemente

intercambiaveis nas falas do jovem.

Essa dualidade processo-objeto pode levar a contradicbes quando se
compara a cardinalidade de conjuntos. Considerando, digamos, o conjunto dos
nameros naturais e o dos nimeros pares e a infinidade como um processo, Como

um esquema de avaliacdo, pode-se levar a respostas diferentes:

Como ambos continuam e continuam, entdo ha 0 mesmo nos dois;
Como ambos continuam e continuam, entdo nao se pode compar a-10s.
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Ambas respostas estdo de acordo com a explicacdo relacionada a
explanacao todo-parte: os pares sdo menores porque sdo um subconjunto proprio

dos numeros naturais.

Mas, infinidade também aparece como sendo um objeto. Evidéncia
imediata pode ser vista em Monaghan (1986, p. 133-140) nas respostas ao
namero de questdes sobre cardinalidade. Exemplo: podemos pensar 1, 2, 3, ...
coOmo um unico conjunto? (147 de 190 responderam sim). Tais questdes
requerem a comparacdo de conjuntos com um numero infinito de elementos e
somente um numero pequeno de estudantes ndo fez comparacbes como “mais

em” e “0 mesmo em ambos”.

Um conjunto como uma unidade pode ser olhado como um objeto e
nenhum dos jovens com mais idade nesse estudo parece ter dificuldade para falar
sobre o numero de elementos de um conjunto infinito. Também, quando
questionados, se 0 © era um enorme numero, 31% de 190 (p. 116) disseram sim.
Em entrevistas, entretanto, os jovens que disseram isso geralmente qualificaram
isto com explicagbes como “ndGs pensamos NiISSO COMo um numero para
simplificar coisas” ou “ndo realmente uma coisa especifica mas...” (ibid. p. 204-
205). Monaghan alerta que se tenha cuidado com esse tipo de questao para que
nao se caia na armadilha, discutida na sessdo de problemas potenciais de
descrever conceitos na forma de palavras que as pessoas usam, pois isso, pode

ir além dos conceitos que elas tém.

O artigo de Fischbein

Em seu artigo, Fischbein analisa diversos exemplos de influéncias tacitas
exercidas por modelos mentais na interpretacdo de varios conceitos matematicos

no dominio do infinito atual. Segundo Fischebein: “O conceito de infinito como é
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bem conhecido, tem tido uma longa e dramatica historia na filosofia e na
matematica. Filosofos gregos ja usavam o termo infinito. Aristoteles rejeitou a
nocdo de infinito atual, mas aceitou a do infinito potencial. Em matematica, o
infinito aparece implicita ou explicitamente nos trabalhos dos primeiros grandes
matematicos. Tornou-se evidente que o conceito de infinito leva a contradicbes
inerentes. Galileu e Gauss concluiram que infinito atual ndo podia ser incluido
num pensamento l6gico e consistente. Kant em suas antinomias se refere ao
infinito do espaco e tempo e conclui que o intelecto humano ndo consegue aceitar
nem o finito e nem o infinito do mundo (em ambos os aspectos — espaco e
tempo). Para Kant, esse é um argumento que prova que espaco e tempo ndo tém
existéncia no mundo externo em si, mas sdo propriedades projetadas,

externalisadas por nossa mente em seus esfor¢cos de cogni¢ao- organizacao.

Filosofos e matematicos distinguiam o infinito potencial do infinito atual. O
que nossa inteligéncia acha dificil, mesmo impossivel, para entender é o infinito
atual: a infinitude do mundo, a infinitude dos niumeros de pontos de um segmento,
a infinitude dos numeros reais como existentes, como dados, etc. Nossa mente é
essencialmente adaptada a realidade finita do tempo e espaco a qual temos que
lidar em nosso comportamento adaptativo. Nossa logica, com todas as suas leis,
pode lidar consistentemente somente com conceitos expressando realidades
finitas e chegar a conclusdes objetivas consistentes com premissas dadas
somente se uma idéia é for dada com objetos finitos ou com conjunto finitos de

elementos.

No momento que comeg¢amos a tratar com o infinito, no sentido de infinito
atual, parecemos cair em contradicfes. Galileu da o exemplo dos quadrados de
nameros naturais todo numero natural tem seu quadrado e vice-versa, 0 que
significa que o conjunto dos nimeros naturais e o conjunto dos seus quadrados
sdo equivalentes, mas por outro lado, o conjunto de quadrados € um subconjunto,

uma parte, do conjunto dos numeros naturais. Isto significaria que um conjunto e
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0 seu subconjunto podem ser equivalentes, ou seja, que o todo e uma parte dele
podem ser equivalentes. Esta conclusdo nao é consistente com a nossa logica
natural. A fonte do paradoxo parece estar no uso do conceito de infinito (atual). A
concluséo natural, em concordéancia com Galileu, é banir o infinito atual da

matematica se quisermos conservar a consisténcia do nosso raciocinio légico.

Por outro lado, alguém inventou o conceito de infinito potencial (ou
dindmico). Nao € um infinito existente, um dado. Tratamos com uma forma
dindmica do infinito quando consideramos processos, que sao, a cada momento,
finitos, mas que continuam indefinidamente. Nao podemos conceber o conjunto
total dos numeros naturais, mas podemos conceber a idéia que depois de cada
namero natural, ndo importa quéo grande ele seja, existe ainda um outro nimero
natural maior. Nao temos dificuldade em entender que um segmento de linha
pode se estender indefinidamente (em nossa imaginacédo). Uma crianca de doze

anos entende e responde corretamente quando lhe perguntam esse tipo de

problema. Alguém possui % de algo, é facilmente aceito que % equivale a 0,333...

O namero 0,333... representa o infinito dinamico. Em contraposicao os estudantes

questionam se 0 0,333... é igual a % ou tende a % Quando se pergunta isso aos

estudantes, geralmente respondem que o 0,333... tende a % 0 que

matematicamente ndo é correto. Voltemos a noc¢do de infinito atual. Como dito,
ele leva a contradi¢cdes e paradoxos. Foi Cantor, no século XIX, que resolveu o
problema do infinito atual. O que Cantor fez foi usar sistematicamente o conceito
de correspondéncia um a um para decidir sobre a equivaléncia dos conjuntos. Se
tivermos que comparar dois conjuntos infinitos, ndo poderemos contar seus
elementos como contamos grupos de objetos finitos. Temos que determinar a
equivaléncia ou n&o-equivaléncia de dois conjuntos por meios formais. E facil
provar que o conjunto de nimeros naturais e o conjunto dos nimeros pares sao

equivalentes.
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1,2, 3,4,..
2,4,6,8, ..

O conjunto de numeros pares esta contido no conjunto dos numeros
naturais, mas se usarmos o critério de equivaléncia, baseado na correspondéncia
um a um, concluimos que o conjunto dos numeros naturais e 0 seu subconjunto

(o conjunto dos numeros pares) ttm a mesma cardinalidade, a mesma magnitude.

Figura 1

Figura 2

Da mesma forma, pode-se provar, por exemplo, que 0os segmentos AB e
CD (veja Figura 1) contém o mesmo numero de pontos. Parece estranho, mas o
critério da correspondéncia um a um mostra que os dois conjuntos de pontos sao

equivalentes.

Para nossa inteligéncia finita, tal conclusdo parece inaceitavel. Um
estudante, certa vez, perguntou o seguinte: “dados dois segmentos AB e CD (veja
Figura 2), eu desenho as perpendiculares por A e por B a CD. Entao,
acrescentamos ao segmento EF, que é igual a AB, os pontos dos segmentos CE

e FD, que ndo estdo contidos em EF. Como é possivel a equivaléncia?
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Formalmente, o estudante continuou, vocé pode estar correto, mas visualmente,
intuitivamente, parece ser inaceitavel que se tenha a mesma quantidade de
pontos em AB e CD. Ha algum truque ai? Sim, ha um trugue. Se evitarmos essa
discussdo, podemos criar confusdo nas mentes dos estudantes e esse truque

sera considerado na sequéncia”.

Fischbein diz que pensar em termos de modelos é substituir certos
conceitos originais que, usualmente, sdo muito abstratos ou muito complexos e as
respectivas realidades, muito grandes ou muito pequenas, em relacdo a nossa
capacidade de entendé-las. Para ele, os modelos sdo substitutos que nos ajudam

a resolver varias classes de problemas.

Define o termo modelo, como utilizado no texto, assim: considerando dois
sistemas A e B, B é definido como modelo de A se € possivel transferir
propriedades de A em termos de B para produzir descri¢cdes consistentes de A em
termos de B ou para resolver problemas — originalmente formulados em termos de

A — utilizando uma traducéo em termos de B.

Ainda segundo Fischbein (2001, p. 312), “o conceito de modelo mental se
refere a representacfes mentais que substituem, no processo de raciocinio, as
entidades originais, usualmente para simular e facilitar o processo de solucao de

um problema”.

Modelos podem ser abstratos ou figurais, analogicos, paradigmaticos ou

diagramaticos, tacitos ou explicitos. A formula szzgt2 € 0 modelo abstrato da

relacdo entre espaco e tempo numa queda livre. A representacdo de Bohr do
atomo é baseada numa analogia com o sistema planetario. Uma parabola € um

modelo pragmatico (prototipo) de conicas.

81



M )
F2
Figura 3

Mas vamos focar na dicotomia: o modelo tacito ou explicito. Se
considerarmos duas forcas tendo o mesmo ponto de aplicacdo e quisermos
determinar a forgca resultante, pode-se utilizar a representacdo geométrica de
vetores (Figura 3). Usando tal modelo, esta representacdo geométrica,
poderiamos ensinar qual seria a direcdo e magnitude da forca resultante. Forca é
um conceito abstrato. Sua representagdo intuitiva € o sentido de esfor¢co. Sua
representacdo objetiva, geomeétrica e explicita usa a representacdo geométrica de
vetores. Uma vez que o problema de determinagcao da forca resultante, adicdo de
duas forcas F1 e F2, é traduzida em termos geométricos vetoriais, consegue-se 0
resultado: a forga resultante. A solugdo € obtida em termos geométricos. Essa
solucdo pode ser reproduzida em termos do problema original, que é determinar a
magnitude e a direcdo da forca resultante, por exemplo, em dinamos. Por
analogia e generalizacdo, vocé pode resolver um problema no qual diversas
forcas devem ser adicionadas. Todas essas operagdes s&o feitas consciente,
intencional e explicitamente. Na ciéncia, na matematica, na fisica, na quimica, na
biologia e na ciéncia do comportamento etc uma ampla variedade de modelos séo
usados: analogias, prototipos, diagramas etc. Uma ampla variedade de modelos

também é utilizada na didatica de ciéncias e matemaética.

Mas, no processo de raciocinio também intervém modelos para os quais
nao estamos alertas e que substituem tacitamente alguns dos componentes
originais do processo de raciocinio. Tais modelos podem ter sido inicialmente
conscientes, mas mais tarde essa origem consciente pode ter sido esquecida.
Esses modelos continuam a agir e influenciar o processo de raciocinio sem que o
individuo se aperceba da sua origem e do seu efeito. Por exemplo: o axioma

euclidiano que diz que dois pontos determinam uma reta. Os termos geomeétricos
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ponto e reta sdo abstracoes. Um ponto ndo tem dimensao, uma reta tem apenas
uma dimensdo. Tais objetos ndo existem na realidade e ndo podem ser
representados como tais mentalmente. Utilizamos modelos pictoriais, uma
pequena mancha para um ponto e um fino risco desenhado para as linhas
geomeétricas. Com esses modelos em mente, pode-se formular um numero de

axiomas e varios teoremas. Por exemplo, para as questdes:

“Quantos pontos duas linhas podem ter em comum?” A representacéo
visual, o modelo, nos mostra a resposta: nenhum, um ou uma infinidade de
pontos (se as duas linhas coincidem). Qual é a menor distancia entre dois
pontos? Visualmente, concluimos que a menor distancia entre dois pontos é
obtida pela medida do segmento de reta que une esses pontos. Sem a ajuda
visual, sem algum modelo pictorial, isto seria muito dificil, sendo impossivel,
formular axiomas e construir teoremas. Os modelos pictoriais, apesar de serem
apenas modelos, tém um papel essencial para o raciocinio geométrico, apesar do

fato de que os objetos originais mentais da geometria sdo abstracdes.

Apesar de sabermos perfeitamente que os pontos matematicos nédo tém
dimensdes, continuamos a pensar tacita e inconscientemente em termos de
pequenas manchas. Psicologicamente, ndo conseguimos nos livrar dessas
imagens. Certamente, comparando os dois conjuntos (figura 2) em termos de
pequenas manchas de igual tamanho, os dois conjuntos ndo sao equivalentes.
Temos que abandonar absolutamente o modelo e usar somente o abstrato.

Processos cantorianos.

Na realidade, enquanto seguimos os caminhos de pensamentos abstratos
formais, concluimos que os dois conjuntos sdo equivalentes. O modelo intuitivo
figural, constituido de pequenas manchas, continua a interferir no processo de
raciocinio. Um sentimento de dificuldade, de contradi¢cdo, de paradoxo, aparece e

nao conseguimos nos livrar dele. O mesmo sentimento de desconforto aparece
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relacionado a todas as comparagdes de conjuntos infinitos. E impossivel imaginar
que o conjunto de pontos de um segmento, de um quadrado, de um cubo sejam
equivalentes. Comparamos 0s conjuntos de pontos, de figuras, tendo diferentes
nameros de dimensdes: uma, duas, trés. Apesar disso, 0S conjuntos sao
equivalentes. Em termos matematicos elementares, isto quer dizer que 0 numero
de pontos de um segmento, de um quadrado, de um cubo € o mesmo. O modelo
tacito das manchas, dos pontinhos continua a interferir no nosso processo de
pensamento e nos impede de alcancar um sentimento genuino de consisténcia
l6gica, apesar do fato de que, formalmente, ndo deveriamos nos basear nas
consideracdes figurais. Mas, as coisas sdo ainda mais complicadas. Para eliminar
esse sentimento de contradicdo, podemos simplesmente declarar que todos
esses conjuntos séo infinitos e, portanto, equivalentes, mas as coisas nao sao tao
simples. Dois conjuntos podem ser infinitos e ndo serem equivalentes no sentido
de Cantor e esta foi uma de suas grandes descobertas, pois o conjunto dos
nameros naturais e o0 conjunto de pontos de um segmento de reta, embora
infinitos, ndo sdo equivalentes. Cantor provou que os dois conjuntos ndo podem
ser colocados em correspondéncia biunivoca, uma vez que o infinito do conjunto
de pontos em um segmento de reta € mais rico, infinitamente mais rico que o
conjunto infinito dos nameros naturais ou, de modo geral, racionais. Em outros
termos, a tentativa de resolver intuitivamente os paradoxos acima de um modo
mais sutil, ndo adianta. Desistindo do modelo figural de ponto de pequenas
manchas, substituimos a estratégia do primeiro modelo intuitivo por um modelo
mais complexo, mas ainda intuitivo, em que infinito € igual a infinito. Como
sabemos, esta estratégia também nao ajuda mais. Nao é verdadeiro que infinito
seja igual a infinito em todos os casos. Na teoria cantoriana pode-se assumir a
existéncia de uma escala infinita de conjuntos infinitos nao-equivalentes, isto €,
com cardinais diferentes, a primeira das quais sendo representada por um

conjunto de numeros naturais e a segunda pelo conjunto de nimeros reais.
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A principal observacao a respeito do que foi dito acima nao € a existéncia e
a influéncia dos modelos tacitos em nosso pensamento quanto ao dominio do
infinito atual. A principal observacdo €, em nossa opinido, a persisténcia e o
impacto de tais modelos pictoriais mesmo em individuos ja altamente treinados
em matematica e que conhecem a natureza abstrata dos objetos matematicos. A
enorme dificuldade que Cantor teve no seu tempo, quando exp6s 0S seus
achados a respeito do infinito atual, veio de matematicos altamente treinados que
nao conseguiam se livrar do impacto dos modelos pictoriais tacitos primitivos em
seus raciocinios matematicos. Nenhum desses matematicos pode admitir para si
que um ponto é genuinamente uma pequena mancha, no entanto, rejeitaram o
que Cantor disse sobre a equivaléncia do conjunto de pontos de um segmento, de
um quadrado e de um cubo. Disseram, apenas, que isto seria impossivel ao

considerar o numero diferente de dimensdes desses objetos.

Escrevemos acima sobre alguns dos modelos pictoriais de conceitos aos
quais o infinito esta relacionado — pontos, linhas, etc. Esses modelos, portanto,

podem ter um impacto inconsciente no processo matematico.

O segundo aspecto relacionado a interpretacdo intuitiva do infinito, refere-
se ao que podemos chamar de capacidade inesgotavel do infinito. Como iremos
ver, essa propriedade do infinito foi tacitamente assumida e tem consequéncias

consideraveis para o raciocinio matematico dos estudantes.

Conforme pesquisas realizadas, Fischbein, Tirosh e Hess (1979) fizeram a
seguinte pergunta: C € um ponto arbitrario ocupando algum lugar de um
segmento de reta AB. Se dividirmos o segmento AB primeiro em duas metades e
depois continuarmos a dividir cada segmento da mesma maneira, nao
chegaremos a uma situacao na qual um dos pontos de divisdo vai coincidir com o

ponto C?
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Os sujeitos dessa pesquisa eram estudantes que estavam nas quintas,
sextas, sétimas, oitavas e nonas séries. As porcentagens de estudantes que
responderam afirmativamente (ou seja, que um dos pontos de divisdo vai coincidir
alguma hora durante o processo de divisdo com o ponto C) seguem abaixo:

82,6 (quinta); 91,4 (sexta); 81,6 (sétima); 67,3 (oitava) e 88,1 (nona).

Como podemos ver, a grande maioria dos estudantes respondeu
afirmativamente. Comecando pela sétima série, os estudantes tinham visto
alguma coisa sobre nameros racionais e irracionais. Mesmo assim, ndo levaram
em conta que um ponto irracional ndo pode ser alcancado por tal divisdo e que
nem todos os pontos racionais podem ser alcancados. Nossa explicacdo é que
infinito aparece intuitivamente como sendo equivalente a inesgotabilidade, isto €,
se continuar o processo de divisdo indefinidamente, todos os pontos podem ser

alcancados.

Na nossa opinido, essa interpretacdo do infinito € a razdo essencial pela
qual intuitivamente ha apenas um tipo e um nivel de infinito. Um infinito que €&
equivalente com inesgotabilidade ndo pode ser ultrapassado por um infinito maior,
mais rico. Com referéncia a questdao mencionada acima (se um dos pontos de
divisdo do segmento AB vai alcancar o ponto C), a l6gica da inesgotabilidade,
caracteristica do infinito, implica que, no limite, a divisdo sucessiva de segmentos

vai cobrir todos os pontos do segmento e que isto ja € o infinito atual.

Segue um importante aspecto do problema do infinito atual. ldentificamos
acima dois modelos tacitos basicos que tém um impacto no manejo do conceito
de infinito quando se trata de subgrupos de pontos e outras figuras geométricas.
Primeiro, a persisténcia dos modelos pictoriais de pontos (manchas) e tracos de
tinta que, no caso de infinito, sdo capazes de distorcer conclusdes racionais, (por
exemplo, que o0 numero de pontos em dois segmentos de diferentes

comprimentos é diferente; que o nimero de pontos em duas figuras de diferentes
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dimensdes também é diferente, etc.). Por outro lado, se o infinito € equivalente,
intuitivamente, com inesgotabilidade, todos o0s conjuntos infinitos sao
equivalentes. Sendo assim, 0 conjunto dos numeros naturais e o conjunto de
pontos de um segmento de reta sdo equivalentes e o conjunto dos pontos de dois
segmentos de reta com diferentes comprimentos sdo equivalentes, etc. O efeito é
que o conceito de infinito atual € intuitivamente contraditério. As duas intuicdes

tendem a ser conflitantes entre si.

Baseados nessa analise formulamos a hipétese de que o0s sujeitos vao
optar espontaneamente por uma das duas alternativas. Considerando o caso
mais simples de dois segmentos de comprimentos diferentes (Fischbein, Tirosh e
Hess, 1979), a cada nivel de idade as respostas séo distribuidas em dois grupos
opostos: aqueles que consideram gque 0s conjunto de pontos sdo equivalentes e
0s que consideram que ndo sdo. Para a primeira op¢cdo — 0S conjuntos sao
equivalentes — obtivemos as seguintes porcentagens, de acordo com as classes:
27,3 na quinta série; 49,1 na sexta; 33,6 na sétima; 24,5 na oitava e 29,7 na nona
série. Para a segunda opc¢ao — 0s conjuntos ndo séo equivalentes — obtivemos as
seguintes porcentagens: 59,1 na quinta; 43,6 na sexta; 53,8 na sétima; 64,3 na
oitava e 60,4 na nona série. As respostas foram, entdo, divididas em duas
categorias. Assim, houve menos sujeitos que estimaram, intuitivamente, que em
ambos o0s conjuntos existem uma infinidade de pontos (cerca de 30 a 40%) e mais
sujeitos que consideraram no segmento de reta de maior comprimento haver mais
pontos. Ao serem solicitados a comparar o conjunto de pontos de um segmento e
de um quadrado, tivemos um resultado similar. Falando no geral (todas as classes
juntas), 26,7% estimaram que 0s conjuntos eram equivalentes e 73.3% estimaram
que ndo eram equivalentes. Sendo assim, houve mais sujeitos para os quais o
impacto figural era mais forte do que a idéia mais abstrata de equivaléncia de
infinitos (infinito como inesgotavel), logo, a idade ndo parece ter um impacto

consistente e forte na distribuicdo das respostas.
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Um ponto adicional interessante: durante a entrevista foi sobre a solicitacao
de uma crianca de 13 anos a comparar 0S conjuntos de pontos de dois
segmentos de diferentes comprimentos. A crianca inicialmente hesitou, mas,
finalmente, concluiu como segue: "Ha o mesmo numero de pontos nos dois
segmentos. Os dois conjuntos sao infinitos, mas os pontos no segmento maior

sdo maiores".

Generalizando os achados acima, pode-se concluir que pelo menos em
relacdo ao infinito, pode-se identificar mais de um modelo tacito para 0 mesmo
tipo de questéo, que age por tras da cena, levando a duas tendéncias opostas de
resolucdo do problema. Entretanto, mais pesquisas sdo necessarias para o0

entendimento da dindmica de tais modelos conceituais.

Verificamos que ao tratar de conceitos altamente abstratos ou complexos,
nosso raciocinio tende a substitui-los por substitutos mais familiares, mais
acessiveis e mais facilmente manipulaveis, que séo os modelos mentais. Algumas
vezes, 0s modelos mentais séo usados intencionalmente, conscientemente, mas,
outras vezes, ndo percebemos sua presenca ou impacto: sdo os modelos tacitos
que tém um efeito consideravel em nosso pensamento estratégico e em nossas
conclusées. O modelo € parcialmente diferente do original e, por isso, sua
relevancia é necessariamente limitada. O modelo traz consigo, também,
propriedades que ndo séo relevantes para o original. Os modelos tacitos nao
controlados conscientemente podem levar a distorcdes nas interpretacfes e

conclusoes.

Em seu artigo, Fischbein analisa os efeitos dos modelos tacitos no
raciocinio com o infinito e os principais modelos foram: pequenas manchas de
tinta para pontos, tracos finitos para linhas, propriedades parciais para
interpretacdo e medicdo do tempo (especialmente com referéncia ao paradoxo de

Zendo). O aspecto adicional considerado foi a interpretacdo do infinito como
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equivalente com o inesgotavel. Percebemos que o impacto tacito dos modelos de
figura, na logica dos conceitos geométricos abstratos, quando se trata do infinito,

pode levar a interpretacdes erradas ou contraditorias.

Nessa questdo, o autor acima sugere que no ensino da geometria, na
teoria dos numeros, na teoria dos conjuntos, os estudantes devam estar atentos
ao impacto dos modelos tacitos (geralmente de figuras) nos seus processos de
raciocinio para que sejam auxiliados a controlar melhor seu raciocinio matematico

e evitar possiveis armadilhas.

O artigo de Igliori e Silva

Trata-se de um estudo diagndstico realizado de forma comparativa sobre a
concepcdo de numeros reais, entre alunos iniciantes e finalistas de cursos de
exatas. O estudo foi realizado pela analise de um questionario aplicado a 50

estudantes sendo 36 iniciantes e 14 finalistas.

Houve, por parte dos pesquisadores, a intencdo de conhecer: quais das
concepcgdes consagradas em estudos diagndsticos realizados em outros paises
(concepcdes que revelam a existéncia de obstaculos de ordem epistemoldgica, de
ordem didatica ou construidas nas experiéncias de vida) apareciam entre aqueles
estudantes brasileiros e quais delas persistiam entre alguns deles, os finalistas,

mesmo tendo passado por um curso de Analise Real.

Os autores destacam que o processo de elaboracdo do conceito de
namero real foi conflituoso trazendo em seu bojo nogbes que, durante séculos,
criaram dificuldades para a construgdo da matematica: nog¢Bes como
incomensurabilidade de grandezas, de infinito atual e potencial, de continuo, de
limite, etc. Recorrem a histéria para subsidiar suas analises observando que a
irracionalidade e a existéncia de grandezas incomensuraveis muito incomodaram
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0s gregos (300 anos A.C) e levaram Eudoxio a propor dissociacdo completa dos

campos algébricos e numéricos e, que as concepcbes de infinito deixaram

atormentados pensadores como Aristoteles e Galileu, os quais ndo aceitavam a

nocao de infinito atual. Esta ai, nosso interesse nesse artigo. Nele sdo tratados

temas ligados a cognicdo e a nocdo de infinito. Escolhemos no questionario

aplicado e nas analises realizadas o que explicitamente relacionava-se a nocao

do infinito.

O questionario continha 9 questdes, sendo a questdo Q9 proposta para

avaliar as concepc0des dos alunos quanto a comparacéo de conjuntos infinitos.

Q9) Compare os conjuntos A e B, em cada caso, quanto a "quantidade de

elementos”. Coloque um X na coluna escolhida.

|A] indica a “quantidade” de elementos de A.

|B]| indica a “quantidade” de elementos de B.

|Al =1B]

|Al <|B]

|Al >|B]

a) A é o conjunto dos
nameros impares

B é o conjunto dos
numeros pares

b) A € o conjunto dos
pontos da reta

B € o conjunto dos
nameros reais

c) A é o conjunto dos
naturais

B é conjunto dos
nameros pares

d) A é o conjunto dos
ndmeros racionais

B € o conjunto dos
ndmeros irracionais

e) A é o conjunto dos
ndmeros naturais

B é o conjunto dos
ndmeros racionais

f) A é o conjunto dos
pontos de um
segmento de reta

B é o conjunto dos
pontos da reta

g) A é o conjunto dos
racionais

B é o conjunto dos
reais

h) A é o conjunto dos
naturais

B é o conjunto dos
pontos de um
segmento de reta

i) A é o conjunto dos
ndmeros inteiros

B é o conjunto dos
naturais
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No quadro abaixo esta indicado o total de respostas dadas a cada item da

Q9 pelas duas categorias de estudantes:

Iniciantes Finalistas
(AFBUOMIAXKBUOODAGBULDIAFEBUOLAKKIBO/UDAGLOBL
a) 27 5 4 10 4 0
b) 28 5 3 11 0 2
C) 9 7 20 4 1 9
d) 16 10 7 4 5 2
e) 12 15 0 8 4
f) 12 20 1 1 10 1
9) 11 15 6 2 9 1
h) 8 9 15 1 6 5
)] 16 9 8 2 2 9

Observacao.

Alguns estudantes néo responderam determinados itens.

A analise diagndstica indica que: alunos iniciantes utilizaram, para tomar
decisdo, mais de um critério ao mesmo tempo, mesmo o0s contraditorios, sem
causar incomodo a eles. A situacdo mais significativa foi, por exemplo, num
determinado item utilizarem o critério da infinitude para decidirem pela mesma

cardinalidade de dois conjuntos e, em outro, o principio “do todo e das partes”.

No que tange a comparagdo entre as respostas dos estudantes que
iniciavam o curso e os finalistas, os autores avaliaram que, apesar de ter havido
evolucdo relativamente no indice de acertos, muitas das concepcdes

“inadequadas” persistiram apds um curso introdutério de Analise Real.

O problema de mudar “concepcdes” dos estudantes num processo de

ensino tem sido alvo dos pesquisadores da Educacdo Matematica.
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No artigo de Igliori e Silva sédo referenciados Viennot, Mortimer que
afirmam: “Os estudos realizados sob essa perspectiva revelam que as idéias
alternativas de criangcas e adolescentes sdo pessoais, fortemente influenciadas
pelo contexto do problema e bastante estaveis e resistentes a mudanca, de modo
que é possivel encontrd-las mesmo entre estudantes universitarios. Realizadas
em diferentes partes do mundo, as pesquisas mostram o mesmo padrdo de idéias

em relagdo a cada conceito investigado” (1998).

Os autores revelam que estudos de concepcdes, embasados em reacdes
as teorias piagetianas, tém resultado em propostas construtivistas de ensino. E
que pesquisadores em Educacdo Matematica como Robinet (1989), Tirosh (1995)
e Fischbein (1995), atestam que se pode obter melhorias no processo de ensino
quando o professor conhece as idéias conceituais dos estudantes bem como
aguelas que séo persistentes apos um estudo mais sistematizado. Segundo Igliori
e Silva, “as concepcdes prévias dos estudantes sobre um conceito € um dos
pontos a ser investigado, dada a complexidade envolvida no processo de
ensino/aprendizagem, entendendo que a mudanca conceitual ndo ocorre pela

simples substituicdo das idéias alternativas do estudante por idéias cientificas”.

As respostas apresentadas pelos estudantes investigados por Igliori e Silva
indicam a existéncia de concepcbes assemelhadas a dos matematicos através
dos tempos. A seguir, algumas das justificativas as respostas da forma como os

estudantes as apresentaram, por item:

* lItens a) e b): As cardinalidades sdo iguais, pois 0S conjuntos Sao
infinitos; O conjunto dos pares € maior que o dos impares, pois tem o

Zero a mais.

* Item c): A cardinalidade de N é maior, pois, 0s naturais sdo pares e

impares; A cardinalidade de B é menor porque B € subconjunto de A.
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* ltens b), c), d), e), ), i): Os conjuntos sao infinitos, sendo assim nao da
para saber quantos numeros existem neles; Infinito € igual a infinito,

portanto os dois conjuntos tém a mesma quantidade de elementos.

» Item f): O segmento de reta € limitado, a reta tem infinitos pontos, logo a
cardinalidade da reta € maior; O segmento é finito, portanto menor que

um conjunto infinito.

e Itemi): A inclui os negativos o que n&do ocorre com B, assim A tem mais

elementos que B.

Os autores afirmam que, basicamente, os estudantes finalistas indicaram
possuir concepcdes de mesmas caracteristicas que o0s iniciantes e, a diferenca
era somente de certa coeréncia nas respostas, mantinham o mesmo critério para
todos os itens da questéo. Os critérios utilizados pelos estudantes finalistas foram

sinteticamente assim apresentados:

Itens c), d) e), f), g): AOB (|A|<|B]);

« ltemi): BOA (JA|>|B|);

e Item b): A reta tem infinitos pontos (|A|>|B]);

« Item e): A é infinito e B ndo (JA|>|B]);

» Itemf): O segmento é limitado e a reta ndo (|A|<|B]|);
» Item g): Os reais contém os racionais (|A|<|B]);

» Item h): O conjunto dos naturais € infinito e 0 segmento néo.
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CONSIDERACOES FINAIS

Ao finalizar este trabalho, vale relembrar seu objetivo principal, o de
elaborar um material sobre o infinito com enfoques variados: matematico,
epistemologico, histérico e educacional. A organizacdo visou evidenciar as
relacdes existentes entre os diversos tratamentos do tema com o objetivo de

contribuir com pesquisas no ambito da Educacdo Matemética.

Ao mergulharmos nos diversos aspectos do tema infinito, deparamo-nos
com nossas proprias dificuldades e pudemos constatar com este estudo que ha a
necessidade de um conhecimento profundo sobre este assunto o qual tem sido
pouco desenvolvido pouco desenvolvido nos cursos de Célculo Diferencial e
Integral e Andlise Matemética, podendo ser fonte de entraves no ensino dessas

disciplinas.

A questdo dos dois infinitos, potencial e do verdadeiro infinito, o atual, é
ausente nos livros didéaticos brasileiros. Levando-se em conta a grande
importancia epistemoldgica desses conceitos reforcada neste estudo, tal auséncia

€ um dos pontos que indica 0 que expressamos acima.

A nocéo do infinito, que causou dificuldade permanente na construgcédo da
Matematica, € um dos alvos privilegiados dos educadores matematicos e deve

também sé-lo do professor de matemética. A essencialidade abstrata desse
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objeto matematico e sua importancia fundamental na constituicdo dos conceitos

como numero, limite, etc. justificam.

Todo este trabalho indicou que ha relacdo bem forte entre os aspectos
historicos, epistemoldgicos e cognitivos. O que segue é uma sintese dos

principais pontos que constituem essa relacéo:

1. A concepcado finitista € entrave para aceitar o infinito

A idéia do infinito tem estado, através da histéria, carregada de tintas e
matizes teoldgicos que tém pesado na aceitagdo ou na rejeicdo desse conceito e

das doutrinas matematicas e filoséficas a ele associadas.

Os paradoxos de Zendo de Eléia configuram-se de uma forma marcante a
resisténcia dos gregos em explicitar as no¢des abstratas do infinito e do continuo,

em oposicao as nogdes do finito e discreto.

Numa consideracdo epistemoldgica, ha que se considerar que o fato de

Zenao constituir mentalmente a série 1+EEHZ+BEQ+,,, sem o dominio de
2 20 120

convergéncia, isto €, sem a capacidade de intuir essa operacao realizada com
infinitos termos, o impede de conceber o valor conhecido por ele, o da soma da

série.

O infinito constituiu-se, entdo, num conceito intimidador, conflitante com
nossa intuicdo, causou o espanto de Galileu ao descobrir que os conjuntos
infinitos ndo se comportavam da mesma forma que os finitos (0 caso da
correspondéncia biunivoca entre quadrados perfeitos e nameros inteiros
positivos), sendo um bom exemplo para revelar o efeito do infinito na constituicdo

do saber matematico.
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A introducdo dos “elementos infinitesimais” por Leibniz e Newton na
invencdo do Calculo Infinitesimal desencadeia incessantes discussdes entre 0s
matematicos, fisicos e filésofos. Nao pela utilizacdo nos célculos de quantidades
auxiliares néo finitas, cujos resultados eram expressos em quantidades finitas,
mas pelo estatuto ontolégico, ou seja, metafisico dessas quantidades. Na
perspectiva familiar a época, em que numero e quantidades tinham que ter um
referente real (colecdes finitas de objetos para os numeros inteiros, por exemplo,
linhas, superficies e volumes geométricos para as grandezas continuas), as
quantidades infinitamente pequenas ou infinitamente grandes pareciam

evidentemente marcadas de “irrealidade”.

Bolzano é concorde com a vontade de retirar o conceito de infinito das
especulacdes dos filésofos, ao menos daqueles que, como Hegel, véem ai uma
determinacdo puramente qualitativa, ou daqgueles que, como 0s céticos, buscam,
por toda parte, contradicbes. E necessario adotar um ponto de vista quantitativo
para mostrar a positividade do infinito, seu carater diferenciado e a precisdo com

a qual pode-se apreender esse carater.

A avaliacdo do ponto de vista educacional é apresentada no artigo de
Fischbein quando diz: nossa mente € essencialmente adaptada a realidade finita
do tempo e espaco que lidamos em nosso comportamento adaptativo. Nossa
l6gica com todas as suas leis pode lidar consistentemente apenas com conceitos,
que expressam realidades finitas, chegando a conclusdes objetivas, consistentes
com premissas dadas desde que uma idéia seja apresentada com objetos finitos
ou com conjunto finito de elementos. Sua principal hipétese é que a nossa
intuicdo do infinito seja intrinsecamente contraditoria, pois, 0S NOSS0S esquemas

l6gicos estdo naturalmente adaptados aos objetos e eventos finitos.

Em Monaghan encontramos a analise da armadilha a que o educador

matematico pode estar sujeito ao investigar concepcdes de estudantes sobre o
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infinito, pelo fato do mundo real ser aparentemente finito e, consequientemente,

faltarem referéncias reais para um discurso sobre o infinito.

2. A transposicéo de propriedades do finito para o infinito

Como forma exemplar da referida transposicao indicamos um dos grandes
obstaculos epistemologicos para a construgdo do conceito de infinito, a
transposicdo da propriedade valida para os conjuntos finitos: o todo é sempre

maior que suas partes, para 0os conjuntos infinitos.

A forca deste obstaculo pode ser avaliada na condicdo estabelecida pela
matematica para que um conjunto seja infinito: “Um conjunto € infinito se e

somente se esta em bijecdo com uma de suas partes proprias ndo vazias”.

Na epistemologia histérica vamos encontrar este obstaculo quando Galileu
estabelece uma correspondéncia biunivoca entre todos os numeros inteiros e
todos seus quadrados, e diz: “Devemos concluir que existem tantos quadrados
quantos sdo 0s numeros”. Demonstra assim que um conjunto infinito, o conjunto
de todos os inteiros, é “igual em numero” ao conjunto de todos os quadrados dos
nameros inteiros, sendo esse por sua vez um subconjunto préprio do conjunto dos
nameros inteiros. Como poderia ser possivel admitir que “o todo ndo é maior que
uma de suas partes?” Tal fato seria absurdo no contexto dos conjuntos finitos.

Galileu ndo consegue ultrapassar tal dificuldade a qual o impede de avancar na

teoria dos infinitos.

Bolzano chega a dar ao infinito uma determinacao intrinseca: todo conjunto
infinito pode ser posto em correspondéncia biunivoca com uma de suas partes
proprias (ou a um conjunto bijetivamente equivalente a ele). E a descoberta
fundamental dos “Paradoxos”. Se Bolzano néo tira dai todo o partido possivel
nem para uma definicdo de um conjunto infinito como o fez Dedekind, nem de sua
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tentativa do calculo infinito, que esta bem longe de prefigurar a numeracao

transfinita de Cantor, ao menos, coloca em destaque seu alcance epistemoldgico.

Ha nos paradoxos dificuldades apresentadas por Bolzano em razdo do

axioma “o todo € maior que as partes”, geralmente respeitado por ele.

No artigo de Igliori e Silva (1998), as respostas dos estudantes
relacionadas a seguir indicam a transposicao que eles fazem da propriedade “do
todo e suas partes”, valida para os conjuntos finitos para os infinitos. Séo
respostas expressas assim: a cardinalidade do conjunto N é maior que a do
conjunto dos pares, pois, 0 conjunto dos naturais contém 0s numeros pares e
impares; a cardinalidade do conjunto B € menor porque B é subconjunto do
conjunto A; o conjunto A inclui os negativos, 0 que ndo ocorre com 0 conjunto B,

assim o conjunto A tem mais elementos que o conjunto B.

3. A necessidade de dissociar o conceito de numero do de

grandeza

Ao tratar dessa dissocia¢do, Bolzano afirma que finito e infinito sdo dois
caracteres dos conjuntos, das pluralidades e das grandezas. Mas o0 que é uma
grandeza para ele? “Uma totalidade na medida em que € constituida de varias
partes iguais ou, mais geralmente, uma totalidade que pode ser determinada
pelos numeros”, os numeros na concepcdo euclidiana das pluralidades de
unidades, quer dizer, dos multiplos de 1. Considera também as grandezas como
elementos de tipos de objetos. Cada tipo sendo totalmente ordenado pela relacao
de inclusédo: duas entidades do mesmo tipo sdo sempre comparaveis, podendo
dizer que sao iguais e, sendo, qual é maior que qual. Esta segunda definicao,
mais tardia, parece, ser mais ampla que a primeira. Tem a vantagem de dar lugar

a uma distincdo entre numero e grandeza: uma grandeza nao é forcosamente
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determinada por um numero, nem a fortiori, por um numero inteiro, se é que
Bolzano distingue — 0 que ele nunca chega a dizer — entre niumero e numero
inteiro. Na perspectiva dos “Paradoxos”, a distingdo entre nimero e grandeza ou,
ao menos, a possibilidade deixada aberta que uma grandeza seja determinada
sem ser forcosamente por um numero, € muito importante ao menos por duas

razoes:

1) Permite definir as grandezas infinitamente grandes como aquelas que
sao maiores que todo numero qualquer de unidades, isto é, aquelas as quais todo
conjunto finito de unidades constitui apenas uma parte, e as grandezas
infinitamente pequenas como aquelas as quais todo multiplo fica inferior a

unidade. ApoGs essa definicdo, as grandezas infinitas sdo aquelas as quais nao se

o , o ~ 1 : :
pode atribuir um namero inteiro n (nem fracdo —), por maior que seja n. Os
n

nameros inteiros sao grandezas, grandezas finitas, mais precisamente,
pluralidades finitas. Mas, ha mais grandezas que numeros. De fato, as grandezas
compreendem as fracdes (ou grandezas racionais), os irracionais (algébricos ou
nao) denotadas pelas expressoes V2,1, etc. mais as infinitamente grandes e as
infinitamente pequenas (8 16). Observemos bem que os irracionais como~/2 ou 7t
nao sao grandezas infinitas, mesmo se suas expressdes sdo compostas de um
conjunto infinito de partes. Mas, 0 que € necessario destacar aqui € que as
grandezas compreendem: 1) os numeros inteiros ou pluralidades finitas; 2) as
grandezas finitas que ndo sdo numeros: fracbes e grandezas irracionais; 3) as
grandezas infinitas que séo, portanto, aguelas as quais ndo se podem atribuir
nem um numero inteiro, nem uma fracdo e nem uma expressao irracional. Temos
assim duas definicbes para as grandezas infinitas: a de que a grandeza infinita
pode ser apreendida sob um duplo ponto de vista, o de conjunto (uma grandeza
infinita € um todo no qual todo conjunto finito € uma parte) e aritmética (uma

grandeza infinita € um todo no qual todo conjunto finito é uma parte) e a
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aritmética, uma grandeza infinita ndo se exprime por nenhuma expressao inteira,

racional ou irracional.

Ha, no entanto, uma dualidade de um outro tipo na idéia de grandeza. Da
mesma forma que a idéia matematica de nUmero comporta um aspecto concreto
e um abstrato, duplicando-se em numero-objeto: 0 1, 0 2, 0 3, etc. da aritmética
elementar, e em um conceito, 0 de numero inteiro, assim também a idéia de
grandeza consiste, numa parte, das grandezas-objetos; e de outra, uma
propriedade ou um conceito. Bem que as grandezas matematicas concretas se
repartam em varios géneros, a extensdo do conceito de grandeza constitui um
conjunto, o conjunto das grandezas, mais precisamente, 0 conjunto das
grandezas abstratas. E, por isso, ha mais grandezas que ndameros, o conjunto das
grandezas € maior que o conjunto dos nameros. Diriamos, em linguagem atual,
que além dos numeros inteiros esse conjunto compreende o0 que nés chamamos
nameros racionais, 0s numeros irracionais, e enfim os infinitamente grandes e os
infinitamente pequenos. Em outros termos, o conjunto das grandezas constitui
uma extensdo de nosso conjunto dos nameros reais (Qque compreende 0s inteiros,
as fracdes e os irracionais) acrescentando-se os infinitamente grandes e o0s

infinitamente pequenos.

2) A distincdo entre numero e grandeza permite resolver o paradoxo do
maior numero e outros do mesmo tipo. O conjunto, hoje denotado por N, de todos
0S numeros inteiros € o exemplo de uma grandeza (pluralidade) infinita que néo &
um numero, pois, um numero é uma “pluralidade numeravel”, uma grandeza finita.
Bolzano pensa, com justica, que o conjunto dos elementos de N nédo é, ele
mesmo, elemento de N. Deduz-se que ndo se pode atribuir a este conjunto
nenhum numero: “ndo se pode chamar numero esta pluralidade infinitamente
grande”. Mas € bem “um exemplo incontestavel de grandeza infinitamente

grande”.
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A distincdo entre nimero e grandeza, que permite conceber grandezas
infinitas e evitar o paradoxo do numero de todos os numeros, € também aquela
que impede Bolzano de conceber “ndimeros infinitos”. Se o conceito de nimero
pudesse ser ampliado de modo a compreender tdo bem os numeros finitos (os
elementos de N), como os numeros nao finitos (ndo pertencentes a N), poder-se-
ia entdo, como faria Georg Cantor, atribuir ao conjunto dos elementos de N o
primeiro cardinal transfinito, denotado por [Iy. Invocamos esse resultado posterior
nos Paradoxos a ndo ser para mostrar que Bolzano n&o concebe a extensao do
conceito de numero ao dominio do infinito: aquilo que “ndo deve chamar numero”
ndo € um numero. Ndo mais que em Leibniz, ndo h& para ele numeros infinitos —
mesmo no plural —, mas somente pluralidades e grandezas infinitas que, por
definicdo, ndo sdo determinadas por numeros. A idéia de numero (cardinal)
infinito € confusa, mas a de grandeza infinita ndo €. Existem grandezas infinitas,
que dao lugar ao conceito de grandeza infinita, portanto, a um conceito de
grandeza mais geral que o de numero (0s numeros sdo grandezas, mas a
reciproca € falsa). Falam-se da “expressao de numeros infinitos” e de “conceito de
namero infinito” como do que corresponde, por exemplo, a soma da série dos
nameros naturais: 1 + 2+ 3 + ... ininf. , nos “Paradoxos”, acusa de modo radical
a disjuncdo entre numero e grandeza, ndo autorizando a associacdo entre 0s

termos “numero” e “infinito”.

Parece tratar-se de indissociacdo entre numero e grandeza as respostas
dadas pelos estudantes no estudo de Igliori e Silva quando dizem: o conjunto dos
naturais é maior que o segmento de reta, pois o primeiro € infinito e o segundo,
nao; o segmento de reta é limitado, a reta tem infinitos pontos, logo, a
cardinalidade da reta € maior; o segmento € finito, portanto, menor que um

conjunto infinito.
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4. A unicidade do infinito

Na Matematica, a diferenciacédo dos conjuntos infinitos é feita por meio de
suas cardinalidades. Consideram-se dois conjuntos com a mesma cardinalidade
se existe uma correspondéncia biunivoca entre eles. A cada conjunto pertencente
a classe de conjuntos que tem a mesma cardinalidade esta associado um numero
cardinal denotado por: card A ou por |A|. E, dois conjuntos tém cardinalidade
diferente se existir uma funcéo injetiva entre eles, ndo existindo, porém, uma

funcado sobrejetiva.

Na historia, é referenciado que o mais notavel feito de Cantor consistiu em
demonstrar, com rigor matematico, que a nocao de infinito ndo era uma nocao
indiferenciada. Nem todos os conjuntos infinitos sdo de igual “tamanho” e,
portanto, € possivel ordenar seus “tamanhos”. O conjunto dos nameros
irracionais, por exemplo, tem “tamanho maior” que “0” do conjunto dos nameros
racionais. Esses resultados eram tdo chocantes a intuicdo humana que
contemporaneos de Cantor como, por exemplo, Poincaré, condenaram a teoria
dos numeros transfinitos como uma “enfermidade”. Kronecker, um dos
professores de Cantor, classificou-o de “charlatdo cientifico” “renegado” e

“corruptor da juventude”.

Bolzano considera a correspondéncia um a um nao como um paradoxo,
mas como uma caracteristica dos conjuntos infinitos. Estd ai sua grande
originalidade em relacédo a todos os seus precursores. E mais, ndo hesita em se
fundamentar na existéncia de uma tal correspondéncia para afirmar que, eles tém
0 mesmo conjunto de elementos. Bolzano considera que, nesse caso, 0s dois
conjuntos representam o mesmo infinito, embora o segundo seja uma parte
propria do primeiro. Por esta vez, Bolzano admite contra Euclides, Aristételes e

toda tradicdo, que ha um ponto de vista no qual a parte pode ser igual ao todo.
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No 8§ 20, onde aparece de inicio essa propriedade, seu argumento contraria
aguele que diz que conjuntos em correspondéncia biunivoca podem ter entre eles

“as mais variadas relacdes de grandeza”. Por exemplo, o conjunto dos pontos do

intervalo [0,5] da reta real € “menor’” que o conjunto dos pontos do intervalo

[0,12], desde que, esteja estritamente contido nele. Define, portanto, uma relacao

de ordem por inclusdo estrita e trabalha para construir uma aritmética do infinito
sobre essa relacdo de ordem. A preocupacdo, agora, € com muitos infinitos
diferentes, pois, desde que um conjunto esteja contido estritamente em outro,
aguele é “menor” que este. Para que conjuntos infinitos sejam iguais, € preciso,
no limite, e Bolzano ndo recua diante desta estreiteza, que sejam idénticos.
Contrariamente a isso, admitimos apds Cantor, que a bijecao entre dois conjuntos
infinitos ndo € suficiente. Bolzano, ao definir o que chama da “igualdade perfeita”,
ou seja, aquela que tem lugar em condi¢cOes parecidas entre conjuntos finitos,
salienta que €é preciso que a pluralidade dos termos seja “a mesma” nos dois
conjuntos. Isto € enunciado como um teorema, mas 0 desconsidera em
paragrafos superiores, quando diz que o conjunto dos inteiros naturais e o

conjunto de seus quadrados sao o “mesmo conjunto”.

Nos artigos da educacdo matematica numa exploracdo didatica que leve
em conta o modelo figural de ponto € indicada a seguinte preocupacao: numa
abordagem em que se utiliza um modelo figural de ponto de pequenas manchas
corre-se 0 risco de substituir a estratégia do uso de um modelo intuitivo por um

modelo mais complexo, mas ainda intuitivo, no qual o infinito € igual a infinito.

Fundamental para os pesquisadores da educacdo matematica ndo é a
existéncia e a influéncia dos modelos tacitos em nosso pensamento no dominio
do infinito, mas que a persisténcia e o impacto de tais modelos pictoriais precipite
um efeito de tomar o infinito como Unico, mesmo em individuos ja altamente
treinados em matematica e que conhecam a natureza abstrata dos objetos

matematicos. Explicam que a enorme dificuldade que Cantor teve no seu tempo,
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quando expds os seus achados, a respeito do infinito atual, veio de matematicos
altamente treinados que nao conseguiam se livrar do impacto dos modelos
pictoriais tacitos primitivos em seus raciocinios matematicos. Nunca nenhum
desses matematicos péde admitir que um ponto € genuinamente uma pequena
mancha, no entanto, rejeitaram o que Cantor disse sobre o conjunto de pontos de

um segmento, de um quadrado e de um cubo serem equivalentes.

Um outro aspecto levantado é que se o infinito é equivalente,
intuitivamente, com inesgotabilidade, todos os conjuntos infinitos podem ser

considerados equivalentes.

No artigo de Igliori e Silva as respostas: 0s conjuntos sao infinitos, sendo
assim, ndo da para saber quantos numeros existem neles; infinito é igual a
infinito, portanto, os dois conjuntos tém a mesma quantidade de elementos,
relacionam-se com a suposta unicidade do infinito, concepcao existente entre os

estudantes investigados.

5. A nocao de infinito em potencial dificulta a concepcédo de

infinito atual, ou a concepc¢éo do verdadeiro infinito.

Na introducdo dos paradoxos, Sinaceur — o tradutor da escrita em alemao
para o francés — apresenta como um dos problemas no estudo do infinito o fato de
ter sido considerado desde Aristoteles a Leibniz, como algo em potencial ou como
ficcdo. E com Arquimedes, no célculo do volume de uma esfera e de um cone,

gue se tem a noc¢dao de infinito em potencial.

Nos “Paradoxos”, Bolzano defende idéias sobre o infinito ser um conceito
também “objetual”, isto €, como o de ndamero inteiro, de fracdo ou de grandeza

irracional, decorrendo pela primeira a atribuicdo de um mesmo estatuto l6gico

104



para o finito e para o infinito. Também afirma que o infinito existe
matematicamente sob o modo atual e ndo somente potencial (exemplo
geomeétrico simples, uma reta infinita), do que decorre um mesmo estatuto
matematico para o finito e para o infinito. Esta atualidade se verifica tanto nos
exemplos de coisas ndo reais, como 0 espacgo e 0 tempo, quanto nos dominios
dos seres, Deus, com certeza, e também as criaturas: “mesmo no dominio do
real, encontramos por toda parte o infinito” donde a identidade do estatuto

ontolégico do finito e do infinito.

Bolzano tem o incomparavel mérito de introduzir, de fato, o conceito de
conjunto infinito e de dar uma legitimidade matematica ao infinito atual, o
“verdadeiro infinito”. Admitir o infinito potencial, para ele, € determinar o infinito a
partir do finito, como aquele que ndo se alcanca ou que ndo se esvai jamais.
Admitir apenas o infinito potencial é, de fato, ndo sair do finito. Apesar de
tudo isso, assim como Galileu, ndo consegue ultrapassar a forca do infinito
potencial e utilizar a no¢cao de infinito atual para caracterizar, definitivamente, os

conjuntos infinitos como so vai ocorrer com Cantor.

Nas pesquisas da educacdo matematica, a dualidade do conceito potencial
e atual se expressa por meio da consideracdo de um conceito como processo e
como objeto. No artigo de Monaghan, por exemplo, essa dualidade é citada como
elemento de estudo das concepcdes dos estudantes. E ai evidenciado que, como
muitos conceitos matematicos, o infinito, pode ser visto tanto como um processo,
no principio da inducdo ou loopping infinitos na linguagem dos computadores,
guanto como objeto, como um grande numero ou a cardinalidade de um conjunto.
E observado por Monaghan que a linguagem de uma crianca ao falar sobre
infinitude, a reflete como um processo: 0 que continua e continua € infinito,
realizando a infinitude ndo como algo, mas como o ato de continuar sempre. Para
os estudantes, a nocao de processo é também usada como um esquema de

verificacdo, se uma questao dada tiver uma resposta infinita. O fato de um jovem
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utilizar expressdes como o infinito, ndo permite ao pesquisador inferir que aquele

considere infinidade como um objeto, ou seja, que tenha a nocao de infinito atual.

A dualidade processo-objeto pode apresentar contradicbes quando se
compara a cardinalidade de conjuntos. Infinidade como um processo, como um
esquema de avaliacdo, pode levar a respostas diferentes: se dois conjuntos sdo
tais que continuam e continuam, entdo, ha o mesmo numero de elementos nos
dois; se dois conjuntos sdo tais que continuam e continuam, entdo ndo se pode

compara-los.

A infinidade também aparece como sendo um objeto. Evidéncia imediata
pode ser vista nas respostas afirmativas dadas por 147 dos 190 estudantes,
sujeitos da pesquisa de Monaghan a questdo: podemos pensar 1, 2, 3, ... como
um uanico conjunto? Ou quando questionados 60 dos 190, responderam
afirmativamente a questéo: € o co um numero enorme? Os jovens oscilavam em
suas convic¢les, demonstrando nas entrevistas que suas concepcdes do infinito
como objeto, ou de forma atual, ndo correspondiam ao que as respostas

afirmativas pareciam indicar.

Aos cinco pontos elencados, poderiamos, ainda acrescentar muitos outros,
como por exemplo, o da incomensurabilidade de grandezas, todos com
significativa interferéncia no desenvolvimento da matematica e igualmente

causadores de dificuldades no processo de ensino e aprendizagem.

O importante é colocar em questdo que se tais conceitos perturbaram os
homens por tanto tempo, ndo pode ser tratado entre 0s jovens sem que se leve

em consideracao sua complexidade.

A histéria e a epistemologia dos conceitos matematicos ndo se constituem
0s Unicos elementos que permitem estudar o processo de ensino e aprendizagem

de um conceito matematico, mas podem contribuir para o conhecimento de
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concepcdes que os estudantes possam trazer de forma prévia e, com as quais, €

preciso se defrontar para suplanta-las.
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