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RESUMO 
 

 

Esta pesquisa tem por objetivo analisar o processo de visualização durante a 

aprendizagem das noções de valores máximos e mínimos locais de funções de 

duas variáveis reais, de alunos de engenharia. A metodologia do estudo é a 

Engenharia Didática de Artigue. E o referencial teórico está baseado na Teoria dos 

Registros de Representação Semiótica de Duval, especificamente nas apreensões 

perceptiva, discursiva, operatória e sequencial de um registro gráfico representado 

no CAS Mathematica, e na articulação entre o registro gráfico e o algébrico. Nosso 

referencial teórico fundamentou-se, também, na teoria das Situações Didáticas de 

Brousseau, uma vez que iniciamos com a proposta de situações, em cujo cenário 

está o professor-pesquisador diante de um grupo de alunos, em um milieu 

constituído por um laboratório de computação, além dos questionamentos e 

devoluções. Por meio da análise a posteriori das situações didáticas, percebe-se 

que os alunos apresentaram dificuldades em realizar a conversão do registro da 

língua natural para o algébrico, mas, mesmo assim, coordenaram três registros de 

representação semiótica: língua natural, algébrico e gráfico. Já no registro gráfico 

representado no CAS Mathematica, pela apreensão operatória e por meio das 

modificações ótica, posicional e mereológica, identificaram as variáveis visuais 

próprias do registro gráfico, porém, tiveram dificuldade em articulá-las com os 

valores significantes do registro algébrico, apresentado nas definições e teoremas 

de valores máximos e mínimos de funções de duas variáveis reais, e em validar os 

resultados.  Portanto, o estudo da visualização, mediante a teoria dos Registros de 

Representação Semiótica de Duval, mostrou ser um meio para a aprendizagem dos 

valores máximos e mínimos locais de funções de duas variáveis reais. 

Palavras-chave: Visualização. Cálculo de duas variáveis. Situações didáticas. 

Máximos e mínimos. CAS Mathematica. 

 

  



 

 

 

 

 

 

ABSTRACT 
 

 

This work aimed to analyze the process of visualization during the learning of 

notions of maximum and minimum local values in functions of two real variables by 

students of engineering. The methodology of the study is the Artigue Didactic 

Engineering. The theoretical reference was based on the theory of Semiotic 

Register by Duval, particularly in the perceptive, discursive, operational and 

sequential apprehension of a graphic register represented in the CAS Mathematica 

and in the articulation between the graphic and algebraic registers. Our theoretical 

referential was also based on the Theory of Didactic Situation by Brousseau, for we 

got started with situations which have as their main frame the position of the 

professor-researcher who faces a group of students in a milieu formed by a 

computer laboratory, questionings and feedback. The a posteriori analysis of 

didactic situations helped us see that the students presented difficulties converting 

the register from natural language to algebraic but, anyway, they coordinated three 

registers of semiotics representation: natural language, algebraic and graphic. In 

the graphic register presented in the CAS Mathematica, through operational 

apprehension and by means of optical, positional and mereologic modifications, the 

students identified the visual variables inherent to the graphic register. To the 

students it was not easy to articulate the visual variables with the meaningful values 

of the algebraic register presented in the definitions and theorems of maximum and 

minimum values of functions of two real variables. Validating results was not simple 

for them either. Therefore, the study of visualization through the theory of Semiotic 

Register by Duval proved itself to be the way to the apprehension of maximum and 

minimum local values of functions of two real variables.  

Key-words: Visualization. Calculus of two variables. Didactic Situations. Maximum 

and minimum. CAS Mathematica. 

  



 

 
 

 

 

 

 

RESUMEN 
 

 

Esta tesis tiene por objetivo analizar el proceso de visualización durante el 

aprendizaje de las nociones de valores máximos y mínimos locales de funciones 

de dos variables reales en alumnos de ingeniería. La metodología de estudio es la 

Ingeniería Didáctica de Artigue; el referencial teórico se basa en la Teoría de los 

Registros de Representación Semiótica de Duval, específicamente en las 

aprehensiones perceptiva, discursiva, operatoria y secuencial de un gráfico 

representado en el CAS Mathematica y en la articulación entre el registro gráfico y 

el algebraico. Nuestro referencial teórico se fundamenta también en la teoría de las 

Situaciones Didácticas de Brousseau, ya que iniciamos con la propuesta de 

situaciones que tienen como escenario la posición del profesor investigador 

enfrente de un grupo de alumnos, en un milieu constituidos por un laboratorio de 

computación, preguntas y devoluciones. El análisis a posteriori de las situaciones 

didácticas ayudó a percibir que los alumnos presentaron dificultades en realizar la 

conversión del registro en lengua natural para el algebraico, pero coordinaron los 

tres registros de representación semiótica: lengua natural, algebraica y gráfica. En 

la representación gráfica representada en el CAS Mathematica, por la aprehensión 

operatoria y por medio de las modificaciones óptica, posicional y mereológicas, los 

alumnos identificaron las variables visuales propias de la representación gráfica. 

Para los alumnos, no fue fácil articular las variables visuales con los valores 

significantes del registro algebraico presentado en las definiciones y teoremas de 

los valores máximos y mínimos de funciones de dos variables reales. La validación 

de los resultados, también, no fue fácil para ellos. Por tanto, el estudio de la 

visualización mediante la teoría de los Registros de Representación Semiótica de 

Duval demostró ser un medio para el aprendizaje de los valores máximos y mínimos 

locales de funciones de dos variables reales. 

Palabras-clave: Visualización. Cálculo de dos variables. Situaciones Didácticas. 

Máximos y Mínimos. CAS Mathematica 

  



 

 

 

 

 

 

RÉSUMÉ 
 

 

Cette thèse vise à analyser le processus de visualisation lors de l'apprentissage des 

concepts de valeurs maximales et minimales locaux de fonctions de deux variables 

réelles d'étudiants en engénierie. La méthodologie de l'étude est sur L’Ingénierie 

Didactique d’Artigue. Le cadre théorique est basée sur la théorie de la 

représentation registres Sémiotique de Duval, en particulier dans l’appréhension 

perceptive, discursive, opératoire et séquentielle d'un registre graphique représenté 

dans la CAS Mathematica et l'articulation entre l'enregistrement graphique et 

l'algébrique. Notre cadre théorique s'est également appuyé sur la théorie des 

situations didactiques de Brousseau, parce que nous avons commencé avec la 

proposition de situations qui ont le fond de la position de l'enseignant-chercheur 

devant un groupe d'étudiants sur un milieu constitué d'un laboratoire d'informatique, 

des enquêtes et des rendements.  Une analyse a posteriori des situations 

didactiques a aidé à apercevoir que les élèves avaient des difficultés dans 

l'accomplissement de la conversion de l'inscription de la langue naturelle pour 

algébrique mais même si ils ont coordonné trois registres de représentation 

sémiotique: langage naturel, algébrique et graphique. Dans le registre graphique 

représenté dans CAS Mathematica, l'appréhension opératoire et à travers des 

changements optiques, de position et méréologiques, les élèves à identifier leurs 

propres variables visuelles du graphe. Pour les étudiants, il n'était pas facile 

d'exprimer les variables visuelles avec des valeurs significatives de l'enregistrement 

algébrique présentée dans les définitions et les théorèmes de valeurs maximales et 

minimales de fonctions de deux variables réelles. La validation des résultats, aussi, 

n'a pas été facile pour eux. Par conséquent, l'étude de la visualisation en utilisant la 

théorie des dossiers représentation sémiotique Duval s'est avéré être un moyen 

pour apprendre les valeurs maximales et minimales locaux de fonctions de deux 

variables réelles.  

Mots-clés: Visualisation. Calcul de deux variables. Situations Didactiques. Maxima 

et mínima. CAS Mathematica. 
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CONSIDERAÇÕES INICIAIS 

 

 

A disciplina de “Cálculo Diferencial de funções de duas ou mais variáveis 

reais” é oferecida como matéria básica no terceiro semestre em todos os cursos de 

Engenharia na Universidade Nacional do Callao, no Peru. Em razão da 

característica multidisciplinar do curso, são privilegiadas as áreas de ciências 

básicas e de tecnologias, pilares da Engenharia na formação do aluno. 

Na Faculdade de Engenharia de Alimentos, a mencionada disciplina 

denomina-se Matemática III, cuja temática visa priorizar a realização de pesquisas, 

que necessitam de compreensão do Cálculo Diferencial de duas ou mais variáveis 

reais, que demanda, por sua vez, a utilização de conceitos, expressões e modelos 

matemáticos. Observamos que esses alunos, ao estudarem o tópico de 

Multiplicadores de Lagrange com a utilização de representações gráficas, não 

mobilizam seus conhecimentos prévios para compreensão do assunto. 

Constatamos também que profissionais de Engenharia de Alimentos criticam 

o fato de os professores de Matemática, sem formação didática, ensinarem a 

matéria sem relacioná-la a problemas de outras disciplinas, que fazem parte da 

grade curricular.  

Em decorrência desse fato e de que nas aulas são utilizados apenas 

procedimentos algébricos, cujos exercícios são aplicações diretas das definições e 

teoremas estudados, decidimos, com o objetivo de promover mudanças nos 

processos de ensino e de aprendizagem, aprofundar o estudo dos valores máximos 

e mínimos de funções de duas variáveis reais, visando a mobilização de 

conhecimentos. 
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Nesse sentido, concordamos com Neto e Nunes de Almeida (2013, p. 71) 

quando afirmam: 

Essa questão vem sendo discutida pela comunidade de engenharia há 
décadas e sempre se depara com a necessidade de modernização dos 
cursos de engenharia no País. Isso inclui necessariamente a qualificação 
dos docentes que atuam na educação em engenharia. Se por um lado tais 
profissionais têm sido cada vez mais bem formados em suas áreas de 
atuação, por outro ainda carecem de formação pedagógica compatível 
com a responsabilidade de formar os engenheiros do século XXI. Esta 
ação, por sua vez, implica necessariamente numa melhor articulação dos 
cursos com a área de atuação do futuro engenheiro.  

Para a realização deste trabalho buscamos estudos que tratam dos valores 

máximos e mínimos de funções de duas variáveis reais com suporte teórico na 

didática da matemática. Assim, pudemos notar a falta de compreensão de 

conceitos matemáticos no processo de aprendizagem do Cálculo em duas 

variáveis, especificamente, naqueles relacionados à identificação do domínio de 

uma função de duas variáveis reais, à representação gráfica, ao estudo de limites, 

às derivadas parciais, entre outras.  

Ademais, observamos que o suporte teórico adotado pelos pesquisadores 

em nossa revisão bibliográfica foi a Teoria dos Registros de Representação 

Semiótica. Alguns, além dessa teoria, utilizaram a Teoria Antropológica do Didático, 

ou a Teoria da Instrumentação de Rabardel, ou a Teoria de Fischbein (categorias 

de Raciocínio intuitivo) ou, ainda a Teoria APOS – Ação, Processo, Objeto, 

Sistema. Um dos pesquisadores, Alves (2011), apontou a identificação visual de 

valores máximos, mínimos e pontos de sela em uma dada representação gráfica 

no espaço e em curvas de nível, ressaltando que os alunos empregaram a intuição 

para identificar esses valores. 

As representações gráficas são importantes no “Cálculo Diferencial de duas 

variáveis reais” e na “Análise”. Quanto a esta, afirma Guzmán: 

[...] as ideias, conceitos e métodos da matemática apresentam uma 

grande riqueza de conteúdos visuais, representáveis 

intuitivamente, geometricamente, cuja utilização resulta muito 

proveitosa, tanto nas tarefas de apresentação e manejo de tais 

conceitos e métodos como na manipulação com eles para a 

resolução dos problemas do campo [...] (GUZMAN, 1996, p. 2). 

Os gráficos utilizados no estudo de funções de duas variáveis reais são 

apresentados em lousa apenas para ilustrar as propriedades das noções 
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matemáticas. Trata-se de uma representação icônica. Entretanto, essa ilustração 

não permite que os alunos façam uma manipulação direta dos gráficos, dificultando 

a compreensão. 

No laboratório de computação da Faculdade de Engenharia de Alimentos 

está instalado o software Mathematica. No entanto, poucos são os professores, 

desse curso, que utilizam dessa ferramenta nas aulas. Nosso interesse pelo uso de 

software levou-nos a pesquisar seu uso no ensino e aprendizagem do Cálculo de 

duas variáveis. 

Em relação ao uso do software, a maioria das pesquisas consultadas utilizou 

o CAS (Computer Algebraic System – Sistema Algébrico Computacional) Maple 

para o estudo do Cálculo Diferencial e Integral, que abordam funções de duas 

variáveis reais. Essas pesquisas consideraram o Maple um instrumento didático e 

metodológico, em cujas qualidades puderam apoiar-se no desenvolvimento de uma 

mediação que estimula a formação, tratamento e conversão de registros de 

representação semiótica. 

Todos os pesquisadores de nossa revisão bibliográfica afirmam que os 

alunos apresentam dificuldades quando estudam funções de duas variáveis reais 

e que faltam pesquisas sobre a aprendizagem de Cálculo em várias variáveis. Por 

essa razão e por Alves (2011) ter estudado os valores de máximos e mínimos de 

funções de duas variáveis reais, de forma intuitiva, interessamo-nos por estudar 

esse tema buscando ir além ao relacionar as representações algébricas com as 

gráficas possíveis. 

Portanto, queremos responder a questão: “Como acontece o processo de 

visualização durante a aprendizagem das noções de valores máximos e mínimos 

locais de funções de duas variáveis reais para alunos de engenharia?” 

Para respondê-la, usaremos como aporte teórico para o estudo da 

visualização, a Teoria dos Registros de Representação Semiótica de Duval (1995) 

e a Teoria das Situações Didáticas de Brousseau (1998), com objetivo geral de 

análise desse processo. O CAS Mathematica será também adotado, porque é uma 

ferramenta através da qual os alunos podem visualizar, durante a aprendizagem, 

os valores máximos e mínimos de funções de duas variáveis. 
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Escolhemos como metodologia de pesquisa a Engenharia Didática de 

Artigue (1988), pois ela nos permite confirmar ou não nossas suposições pela 

confrontação entre as análises a priori e a posteriori.  

Este trabalho encontra-se estruturado da seguinte forma: 

No capítulo I – Problemática, fizemos um estudo bibliográfico de pesquisas 

voltadas ao ensino e aprendizagem do Cálculo de duas variáveis reais, tanto no 

Brasil quanto no exterior. Apresentamos o CAS Mathematica, a justificativa do tema 

de pesquisa, o referencial teórico, a delimitação do problema e a metodologia de 

pesquisa. 

No capítulo II – Análises preliminares da engenharia didática, voltamos 

nossa atenção à história do Cálculo em várias variáveis reais, fizemos um estudo 

matemático, uma análise de livros didáticos de Cálculo de funções de duas 

variáveis reais utilizados na faculdade de Engenharia de Alimentos, no Peru. 

Finalmente, apresentamos um estudo do objeto matemático no ensino. 

No capítulo III – Experimentação e análises, realizamos a experimentação, 

a caracterização da faculdade de Engenharia de Alimentos e os sujeitos do estudo. 

Apresentamos quatro situações didáticas e uma situação de avaliação, bem como 

suas análises a priori e a posteriori. Finalmente, apresentamos nossas 

considerações finais do estudo. 
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Capítulo 1 - PROBLEMÁTICA 

 

Neste capítulo, apresentaremos a problemática de nossa pesquisa a partir 

do levantamento de pesquisas relacionadas ao estudo do Cálculo em duas 

variáveis reais, justificaremos o tema de pesquisa, e anunciaremos a questão de 

pesquisa, os objetivos e a metodologia. Além disso, contextualizaremos nossa 

proposta no interior de um quadro teórico que nos possibilitará analisar os dados 

deste estudo. 

1.1  REVISÃO BIBLIOGRÁFICA 

Realizamos uma revisão bibliográfica a respeito do ensino e da 

aprendizagem do Cálculo Diferencial e Integral, em relação às funções de variáveis 

reais. Sobre o assunto, encontramos uma dissertação de mestrado, duas teses de 

doutorado e três artigos, os quais apresentaremos a seguir. 

Imafuku (2008), em um curso de Matemática, na disciplina de Cálculo 

Diferencial e Integral, em que se estudam funções de uma variável, suas 

propriedades, limites, derivadas e integrais, notou que os alunos apresentavam 

dificuldades, nos períodos finais do curso, para determinar limites de integração 

tanto para integral dupla como para tripla. Constatou, ainda, que muitos alunos, 

mesmo aqueles bem-sucedidos nas disciplinas de Cálculo, não obtiveram o mesmo 

sucesso quando se depararam com funções de mais de uma variável, 

principalmente, na interpretação de seu significado e de sua representação gráfica. 

Assim, o objetivo da pesquisa de Imafuku (2008) foi verificar as dificuldades 

e os saberes manifestados na transição do estudo de funções de uma variável para 
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o caso de duas, no que diz respeito às variáveis dependentes e independentes e à 

interdependência entre elas, ao domínio e ao gráfico de funções, à relação entre o 

gráfico do domínio e o gráfico da função, e em relação às derivadas parciais de 

primeira ordem. Os sujeitos da pesquisa eram estudantes do quarto e quinto 

semestre do curso noturno de Licenciatura em Matemática, e já haviam estudado 

tanto as funções de uma variável real quanto as de duas variáveis reais. 

O autor elaborou dois questionários fundamentados na Teoria dos Registros 

de Representação Semiótica de Duval, pois acreditava que muitas das dificuldades 

dos estudantes estavam relacionadas à representação. O primeiro questionário, 

chamado exploratório, foi aplicado a quinze duplas de estudantes do quarto 

semestre, o que possibilitou verificar a importância das questões, bem como a 

adequação dos enunciados para o questionário final. 

Com a aplicação desse questionário para estudantes do quarto semestre, o 

autor concluiu que muitas dificuldades são manifestadas no início do estudo de 

funções de duas variáveis, visto que grande parte não compreende o sistema 

tridimensional, ou seja, a representação gráfica em ℝ3. Constatou-se esse fato nas 

questões que envolviam a conversão do registro numérico para o gráfico de pontos 

no sistema 3D. Muitos estudantes também não classificam uma função de acordo 

com o número de variáveis independentes no registro gráfico, pelo contrário, 

utilizam o número de variáveis que aparecem. Na determinação do domínio de 

funções de duas variáveis, há confusão entre domínio e função, e na interpretação 

geométrica das derivadas parciais. 

Em sua tese, Alves (2011) apresenta um estudo do ensino e da 

aprendizagem do Cálculo Diferencial e Integral a Várias Variáveis com o objetivo 

geral de identificar e descrever as categorias do raciocínio intuitivo, de acordo com 

Fischbein. 

 

O autor, em preparação para sua pesquisa, analisou quatro livros didáticos 

e constatou que, em relação ao estudo dos valores máximos e mínimos locais de 

uma função de várias variáveis, a maioria apresenta o comportamento de curvas 

de nível de uma superfície, nas vizinhanças de um ponto crítico, na forma de elipses 

ou circunferências. E quanto ao ponto de sela na origem, os livros exibem 



23 

 
hipérboles, cujas assíntotas são as retas y x  e y x  , apesar de existirem outras 

superfícies que possuem ponto de sela com comportamento diferente. 

Em relação a pontos extremos, Alves (2011) observou que as características 

geométricas são pouco exploradas nos livros didáticos, pois fornecem os critérios 

analíticos para o teste da Hessiana, a fim de que o aluno possa identificar e formular 

uma resposta, sem possuir um significado ou uma imagem mental do objeto 

matemático.  

O autor desenvolveu situações-problema em que os alunos exploraram as 

categorias do raciocínio intuitivo descritas por Fischbein, com base em uma 

mediação didática que envolveu os Registros de Representação Semiótica com a 

intenção de superar e evitar alguns problemas em relação aos conceitos principais 

do Cálculo, em várias variáveis que o autor identificou na etapa de análise dos livros 

didáticos.  

Inicialmente, contou com a participação de 80 alunos do curso de 

Licenciatura em Matemática, matriculados na disciplina Cálculo III (do quarto 

semestre), nos períodos letivos 2009.1; 2009.2; 2010.1 e 2010.2. Entretanto, em 

um momento posterior, o autor escolheu oito sujeitos para um acompanhamento 

mais próximo no decorrer de cada semestre. O estudo foi desenvolvido em sala e 

as entrevistas semi-estruturadas foram realizadas individualmente no decorrer das 

sessões didáticas, durante as “aulas de tira dúvidas”. Para Alves (2011), nessas 

aulas, havia um atendimento individual aos estudantes que manifestaram 

dificuldades, previamente estabelecidas com os sujeitos, em relação ao conteúdo 

da disciplina Cálculo III no decorrer da aplicação de duas avaliações. 

Na elaboração das atividades didáticas, Alves (2011) empregou, como 

recurso didático e metodológico, o software Maple, afirmando que, em muitos 

casos, a representação gráfica no espaço tridimensional é difícil no ambiente lápis 

e papel. Para o autor, o uso do software Maple como instrumento didático e 

metodológico é viável em uma aula de cálculo de várias variáveis reais, e as 

qualidades do Maple podem apoiar-se no desenvolvimento de uma mediação que 

estimula a formação, tratamento e conversão de registros de representação.  
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Segundo o autor, a exploração didática de categorias do raciocínio intuitivo, 

com base em uma mediação didática, que envolveu a exploração de registros de 

representação semiótica, proporciona a evolução do conhecimento do estudante a 

respeito de conceitos principais do cálculo de várias variáveis reais. 

Henriques (2006), em sua tese, ressalta que uma das tarefas preliminares 

para o cálculo de integrais múltiplas é o estudo isolado de funções de duas 

variáveis, em que uma única função é examinada em cada tarefa, dificultando a 

transição para o ensino de integrais múltiplas. Nessa transição, a função não deve 

ser considerada isoladamente, sendo que, na maioria das situações e exercícios 

de resolução de problemas, uma função irá interagir com outras funções para 

formar um domínio tridimensional de integração.  

Para o autor, a representação gráfica no espaço assume um status diferente 

no estudo de integrais múltiplas, em comparação dos estudos preliminares ao 

cálculo de integrais, afirmando que além do conhecimento da representação de 

sólidos clássicos e de revolução no ensino de Integrais Múltiplas, o estudante 

enfrenta os gráficos de sólidos determinados pelas interseções de sólidos convexos 

por meio da interação de suas representações algébricas. É essa interação que 

causa dificuldades na aprendizagem da representação gráfica e algébrica. Assim, 

o objetivo dessa pesquisa foi compreender as dificuldades dos alunos quando 

estudam integrais múltiplas e analisar em que medida a utilização de um software, 

como o Maple, pode ajudá-los a superar essas dificuldades e a favorecer a 

interação entre sua representação gráfica e algébrica. 

Henriques (2006) desenvolveu sua pesquisa com estudantes e professores 

da Universidade Estadual de Santa Cruz (Bahia), da Universidade do Estado da 

Bahia e da Universidade Federal de Campina Grande (Paraíba). Dividiu seu estudo 

em quatro partes: uma análise institucional do ensino de Integrais Múltiplas, uma 

análise das práticas de alunos e professores sobre Integrais Múltiplas, um estudo 

do ambiente informático Maple e experimentos com ou sem Maple. 

O autor concluiu que os estudantes amiúde começam a resolução dos 

exercícios pelos traçados de desenhos à mão livre, predominando em suas práticas 

a representação gráfica de sólidos com papel e lápis, o que não é suficiente para 

permitir a visualização do domínio de integração, mostrando a falta de um trabalho 
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de interação entre a representação algébrica e a gráfica. Ademais, o Maple permitiu 

melhor manipulação do gráfico, compreensão do problema e sua resolução em 

menos tempo. 

Em relação aos professores, Henriques (2006) sustenta que mostraram 

alguma disposição para as estratégias de interpretação geométrica do sólido e de 

representação gráfica do sólido, além de terem reconhecido a existência de certas 

dificuldades ligadas ao ensino das Integrais Múltiplas, particularmente no 

tratamento dos exercícios que os professores julgaram a priori, difíceis. 

Em seu artigo, Carvalho e Pereira (2004) apresentam um trabalho sobre a 

utilização do software Maple como ferramenta para o estudo de gráfico de funções 

de várias variáveis e de curvas de nível, em que as variáveis didáticas referem-se 

ao software e aos objetos matemáticos: domínio e eixos coordenados. Portanto, o 

objetivo da pesquisa foi dar oportunidade, por meio do estudo de Matemática, para 

realizar atividades que suscitem a observação, a análise crítica e criativa de uma 

situação-problema, visando o uso de um programa computacional como ferramenta 

provocadora da atuação crítica do aluno. 

As pesquisadoras interessaram-se pelo funcionamento do gráfico 

representado no software como uma ferramenta heurística na fase de investigação 

do aluno, observando que o potencial gráfico do Maple permitiu visualizar 

rapidamente as informações do gráfico em ℝ2 e em ℝ3, além de analisar como as 

apreensões perceptiva e operatória, segundo Duval, e as interações teórico-

gráficas, intervêm no estudo de funções de várias variáveis reais.  

As pesquisadoras observaram uma aula dada por dois professores que 

desenvolveram aulas teóricas intercaladas por aulas práticas no laboratório. 

Tiveram acesso à sequência didática antes da aplicação em classe e 

acompanharam duas turmas, uma de Cálculo II e outra de Cálculo B, ministradas 

nos cursos de Física e Engenharia Civil, respectivamente. 

Segundo as autoras, o fato de os alunos não identificarem a superfície que 

representa a função estudada, leva-os a aceitarem o gráfico apresentado na tela 

do computador, sem questionamentos, e assim a uma interpretação errônea do 

gráfico. Outro fato relevante foi a determinação do domínio da função representada. 
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Quanto às curvas de nível, o aluno não consegue constatar que o conjunto de 

valores de k é o conjunto de pontos da imagem da função. 

No tocante às pesquisas realizadas fora do Brasil, encontramos a de 

Trigueiros e Martinez (2010), em que analisam como os alunos trabalham com 

funções de duas variáveis reais com o objetivo de investigar a relação entre a noção 

de ℝ3 e de seus subconjuntos, e a compreensão de gráficos de funções de duas 

variáveis reais, com referencial na Teoria APOS e na Teoria de Registros de 

Representações Semióticas de Duval. 

Entrevistaram nove alunos que haviam feito um curso de cálculo em várias 

variáveis reais, percebendo dificuldades na compreensão de funções de duas 

variáveis, em particular, na sua representação gráfica, o que pode estar 

relacionado, segundo os autores, com a construção própria dos alunos do sistema 

de coordenadas retangulares ℝ3. Embora tenham reconhecido as representações 

algébricas de planos, os alunos apresentaram dificuldade para compreender sua 

representação gráfica, nota-se assim que a dificuldade está em realizar a 

conversão do registro algébrico para o registro gráfico. De maneira semelhante, os 

alunos tiveram dificuldades também para representar graficamente outras funções 

de duas variáveis, ou seja, foi difícil para os alunos realizar a conversão do registro 

algébrico para o gráfico e coordenar esses dois registros. Enfim, tais autores 

mostraram que a passagem de funções de uma variável para funções de duas 

variáveis, em particular, no caso de representação gráfica, não é direta. 

Os pesquisadores Xhonneux e Henry (2010) da Universidade de Namur, 

Bélgica, discorrem sobre o ensino do Teorema de Lagrange em cursos de 

Matemática e de Economia. Essa pesquisa tem por objetivo, comparar, por meio 

da Teoria Antropológica do Didático de Chevallard, a apresentação desse teorema 

em dois livros didáticos, na disciplina de Matemática para alunos do primeiro ano 

de estudos de economia da Universidade de Namur e para alunos do primeiro ano 

de estudos de Matemática da Universidade de Louvain. 

Segundo os autores, existe diferença entre o ensino do Teorema de 

Lagrange para alunos de matemática e para alunos de economia. Os estudantes 

de economia são confrontados com o bloco prático-técnico formado pela seguinte 

tarefa: encontrar candidatos que apresentem as melhores soluções para o 
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problema de otimização, sujeita a restrições e utilizam a técnica dos Multiplicadores 

de Lagrange para resolver completamente o problema, justificando-a com o 

Teorema de Lagrange.  Já os estudantes de Matemática são confrontados com o 

bloco prático-técnico formado pela tarefa: provar o teorema de Lagrange que 

permite, ao mesmo tempo, encontrar o resultado e justificar seu resultado. Assim, 

verifica-se que a demonstração é uma das atividades dominantes entre os 

estudantes de Matemática. 

Os autores apontam, em suas conclusões, que existem discrepâncias entre 

o conhecimento matemático a ser ensinado nos cursos de matemática e economia, 

dado que seu papel é diferente em cada curso, pois a Transposição Didática 

fornece classifica os conteúdos que são apresentados nos livros didáticos. É 

preciso estar ciente de que os livros didáticos não representam o conhecimento 

matemático “como é realmente ensinado”, portanto, devem-se realizar análises 

mais profundas para ter acesso às práticas dos professores e às percepções dos 

alunos. 

Essa revisão bibliográfica mostrou-nos que, no ensino e na aprendizagem 

do Cálculo Diferencial e Integral para funções de duas variáveis reais, a abordagem 

dos conceitos estudados, a partir de sua definição formal, proporciona algumas 

dificuldades em termos de compreensão. Referindo-se a generalização da 

transição de funções de uma variável real para funções de várias variáveis reais, 

os pesquisadores insistem na importância da interação entre diferentes registros 

de representação semiótica para generalizar os principais aspectos dessas 

funções. No tocante à conversão entre registros de representação semiótica, os 

autores verificaram que na conversão do registro algébrico para o registro gráfico, 

no ℝ3, os estudantes apresentaram dificuldades.  

Verificamos que em algumas pesquisas, os autores utilizaram o software 

Maple, pois observaram que o ambiente de lápis e papel para a aprendizagem do 

cálculo em duas variáveis reais revela barreiras insuperáveis, em relação à 

interpretação dos tipos de representações e as interações entre eles, tanto para o 

ensino quanto para a aprendizagem.  
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Afirma-se que a interação do aluno com o Maple facilitou o processo da 

aprendizagem, pois o aluno pôde perceber ou intuir, analisar os conceitos inerentes 

ao Cálculo diferencial e integral de duas variáveis reais, e olhar as diferentes 

representações gráficas de funções de duas variáveis reais sob ângulos distintos, 

em função da manipulação direita, em tempo real. 

Visto que o software Maple é um sistema algébrico computacional (CAS) 

com grande potencialidade no ensino de tópicos de Cálculo de funções de duas 

variáveis reais, e o Mathematica é um sistema algébrico computacional, estamos 

interessados nos gráficos representados no CAS Mathematica, por meio de 

comandos próprios do software, e na manipulação desses gráficos, já que este 

software está instalado no laboratório de computação da faculdade onde vamos 

realizar nossa experimentação. Assim, consideramos necessário apresentar alguns 

comandos do Mathematica a fim de representar gráficos de uma função de duas 

variáveis reais nesse software. 

1.2  APRESENTAÇÃO DO SOFTWARE MATHEMATICA 

O software Mathematica, segundo Wolfram (2013), é um programa 

computacional com um Sistema de Computação Algébrica ou CAS (Computer 

Algebra Systems), que combina manipulação simbólica, cálculo numérico, gráficos 

e uma sofisticada linguagem de programação. Na atualidade, está sendo utilizado 

por diferentes profissionais em diversas áreas de conhecimentos, tais como 

Matemática, Engenharia, Medicina, Física, entre outras.  

Wolfram (2013) afirma que o Mathematica é composto de duas partes: o 

núcleo(Kernel) e a interface gráfica (front end). O núcleo é o módulo em que todo 

processamento matemático é realizado, ou seja, é a parte que interpreta os 

comandos e as opções do Mathematica e retorna os resultados. A interface gráfica 

é a forma de interação entre o usuário e um programa por meio da tela, permitindo 

o uso simultâneo de texto e gráfico. 

A forma mais comum de trabalhar no Mathematica é o uso de documentos 

interativos conhecidos como cadernos (notebook), que é a área de trabalho do 

usuário. Em um caderno digita-se a entrada de um comando próprio do software, a 
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seguir, devem-se usar as teclas shift e enter para que seja avaliado pelo núcleo. Ao 

receber esse comando, o núcleo é ativado e gera uma saída que pode ser um texto 

explicativo, uma representação gráfica, uma representação algébrica ou numérica. 

Neste trabalho usaremos os comandos Graphics3D para representar um 

ponto no espaço, ContourPlot3D, para representar planos no espaço, e Plot3D, 

para representar funções de duas variáveis reais. Na sequência, explicitaremos 

esses comandos. 

Gráfico de pontos no espaço. Para gerar um ponto em coordenadas 

cartesianas no espaço, digitamos o comando Graphics3D. Por exemplo, 

escrevemos Graphics3D[Point[{2,-2,3}]], para gerar o ponto representado por (2,-

2,3), conforme Figura 1. 

Figura 1. Gráfico do ponto (2,-2,3). 

 

Fonte: Construção da autora. 

Se quisermos mostrar nesse gráfico os eixos coordenados e nomeá-los com 

as letras x, y e z, por exemplo, escreveríamos de maneira ordenada e sequencial 

as seguintes opções Axes→True e AxesLabel → {“x”,“y”,“z”}. Também, poderíamos 

nomear os eixos com outras letras. Para gerar o ponto (2,-2,3) em que os eixos 

sejam mostrados e nomeados com as letras X, Y e Z, por exemplo, escrevemos o 

comando  

𝐺𝑟𝑎𝑝ℎ𝑖𝑐𝑠3𝐷[Point[{2,−2,3}], Axes → True, AxesLabel → {"X", "Y", "𝑍"}], 

como vemos na Figura 2. 
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Figura 2. Gráfico do ponto (2, -2, 3). 

 

Fonte: Construção da autora. 

O procedimento para descrever a posição do ponto de coordenaas (2,-2,3), 

nesse espaço euclidiano desenhado por três retas numéricas perpendiculares entre 

si, mostrado na Figura 2, é o mesmo que utilizamos para localizar um ponto, em 

que os eixos coordenados são ortogonais entre si e passam pelo mesmo ponto O, 

origem comum desses eixos. De fato, para representar o ponto (2,-2,0) no plano 

xy, como é mostrado na Figura 3, traçamos um segmento paralelo ao eixo x em 

direção ascendente do eixo y, a seguir, traçamos um segmento paralelo ao eixo y 

em direção descendente do eixo x, sendo que os dois segmentos têm como 

intersecção o ponto de coordenadas (0,0,0).  

Figura 3. Localização do ponto (2,-2,3) no sistema cartesiano R3. 

 

Fonte: Construção da autora. 
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Na sequência, traçamos um segmento paralelo ao eixo x de comprimento |2| 

e um segmento paralelo ao eixo y do mesmo comprimento |2|, sendo a interseção 

desses segmentos o ponto de coordenadas (2,-2,0). A seguir, traçamos uma 

diagonal do ponto de coordenadas (0,0,0) até o ponto de coordenadas (2,-2,0), logo 

traçamos um segmento paralelo a essa diagonal que passa pelo ponto (0,0,3) e 

intersectamos com um segmento paralelo ao eixo z de comprimento |𝑧| = 3, 

conforme mostra a Figura 3. 

Portanto, esse software apresenta o gráfico do sistema cartesiano ℝ3 em 

uma caixa definida pelos eixos coordenados, que não passam pela origem, já que 

o gráfico do sistema cartesiano ℝ3 é gerado de outra maneira em que se podem 

observar os octantes do sistema cartesiano, como mostra a Figura 4. No entanto, 

a localização de um ponto nesse sistema de eixos é a mesma que usamos para 

localizar um ponto em um sistema de eixos com orientação positiva. 

Figura 4. Octantes do sistema cartesiano e orientação positiva dos eixos. 

 

Fonte: Construção da autora. 

O Mathematica gera também um ponto em um sistema de eixos com 

orientação positiva, ou seja, no espaço em que os eixos de coordenadas estão 

centrados na origem em que é visto apenas um octante do espaço cartesiano. Para 

isso, ao acrescentarmos no comando Graphics3D a opção AxesOrigin → {0,0,0}, 
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conseguimos que, no gráfico, os eixos coordenados estejam centrados no ponto de 

coordenadas (0,0,0). E com Boxed → False, desaparece a caixa, conforme Figura 

5. 

Figura 5. Gráfico do ponto (2,-2,3) – eixos se intersectam em (0,0,0). 

 

Fonte: Construção da autora. 

Os procedimentos para identificar o ponto (2,-2,3), conforme mostra a Figura 

5, são os mesmos mencionados anteriormente. Assim, notamos que através do 

Mathematica pode-se observar os oitantes do sistema cartesiano e não apenas um 

oitante. Essas diferentes formas de representar o sistema de coordenadas ℝ3 estão 

presentes também nos gráficos de planos e superfícies como explicitaremos a 

seguir. 

Gráfico de planos no ℝ𝟑. Para gerar um plano, digitamos o comando 

ContourPlot3D e em forma sequencial e ordenada digitamos as opções 𝑓 == 𝑘; 

{𝑥, 𝑥min, 𝑥max}, {𝑦, 𝑦min, 𝑦max}, {𝑧, 𝑧min, 𝑧max}. Quando escrevemos 𝑓 == 𝑘, estamos 

representando um conjunto conveniente de pontos no espaço, tal que 

{(𝑥, 𝑦, 𝑘): (𝑥, 𝑦) ∈ ℝ × ℝ   e  𝑓(𝑥, 𝑦) = 𝑘}, o conjunto {(𝑥, 𝑘, 𝑧): (𝑥, 𝑧) ∈ ℝ × ℝ  e 

 𝑓(𝑥, 𝑧) = 𝑘}, ou {(𝑘, 𝑦, 𝑧): (𝑦, 𝑧) ∈ ℝ × ℝ  e 𝑓(𝑦, 𝑧) = 𝑘}. Quando escrevemos 

{𝑥, 𝑥min, 𝑥max}, {𝑦, 𝑦min, 𝑦max}, estamos definindo um domínio conveniente, dentro do 

qual estará o gráfico, e quando escrevemos {𝑧, 𝑧min, 𝑧max}, estamos definindo uma 

imagem conveniente para o gráfico. 

Por exemplo, para gerar o plano definido analiticamente por 𝑓(𝑦, 𝑧) = 2, 

conforme mostra a Figura 6, digitamos o comando, ContourPlot3D[x==2, {x,-5,5}, 
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{y,-5,5}, {z,-5,5}, AxesLabel → {“X”,“Y”,“Z”}]. Como explicamos anteriormente, a opção 

AxesLabel → {“X”,“Y”,“Z”} nomeia os eixos coordenados, os quais podem ser também 

nomeados com outras letras. 

Figura 6. Gráfico do plano f(y,z)=2. 

 

Fonte: Construção da autora. 

Para gerar o plano f(y,z)=2 com os eixos centrados no ponto (0,0,0), 

digitamos no comando ContourPlot3D as opções AxesOrigin → {0,0,0} e Boxed →

False, conforme Figura 7. 

Figura 7. Gráfico do plano f(y,z)=2 - eixos se intersecam em (0,0,0). 

 

Fonte: Construção da autora. 

Notamos que o gráfico do plano, mostrado tanto na Figura 6 quanto na 

Figura 7, representa o conjunto {(2, 𝑦, 𝑧): (𝑦, 𝑧) ∈ ℝ × ℝ  e 𝑓(𝑦, 𝑧) = 2}. Mais de uma 
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vez, afirmamos que, para gerar o gráfico de planos no espaço, o Mathematica 

apresenta-o de maneiras diferentes: os eixos de coordenadas estão centrados na 

origem e em uma caixa limitada pelos eixos coordenados não centrados na origem. 

Gráfico de funções de duas variáveis reais. Para gerar o gráfico de uma 

função de duas variáveis, digitamos o comando Plot3D, e, em forma sequencial, 

digitamos as opções 𝑓(𝑥, 𝑦),  {𝑥, 𝑥min, 𝑥max}, {𝑦, 𝑦min, 𝑦max}. Quando escrevemos 

𝑓(𝑥, 𝑦), estamos representando uma função de duas variáveis definida por 𝑧 =

𝑓(𝑥, 𝑦). Também poderíamos escrever a expressão 𝑓(𝑦, 𝑧) para representar uma 

função de duas variáveis definida por 𝑥 = 𝑓(𝑦, 𝑧) ou uma função definida por 𝑦 =

𝑓(𝑥, 𝑧). 

Quando digitamos {𝑥, 𝑥min, 𝑥max}, {𝑦, 𝑦min, 𝑦max}, estamos definindo um 

domínio conveniente para a função de duas variáveis definida por 𝑓(𝑥, 𝑦). Da 

mesma maneira, se a função fosse definida por 𝑥 = 𝑓(𝑦, 𝑧), escreveríamos 

{𝑦, 𝑦min, 𝑦max}, {𝑧, 𝑧min, 𝑧max}, da mesma maneira para a função definida por 𝑦 =

𝑓(𝑥, 𝑧).  Por exemplo, para gerar o gráfico da função de duas variáveis definida por 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 4 com domínio [−5,5] × [−5,5], digitamos o comando, conforme 

mostra a Figura 8: Plot3D[𝑥2 + 𝑦2 + 4, {x,-5,5}, {y,-5,5}, AxesLabel → {“X”,“Y”,“Z”}], em 

que a opção AxesLabel → {“X”,“Y”,“Z”} nomeia os eixos coordenados, os quais podem 

ser nomeados com outras letras. 

Figura 8. Gráfico da função definida por f(x,y)=x2+y2+4. 

 

Fonte: Construção da autora. 

Observamos que o Mathematica gera o gráfico de uma função de duas 

variáveis em uma caixa definida pelos eixos coordenados não centrados na origem. 

Além disso, observamos na Figura 8 que o Mathematica exibe automaticamente, 

na tela do computador, os valores da imagem da função definida por 𝑓(𝑥, 𝑦) = 𝑥2 +
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𝑦2 + 4 com domínio [−5,5] × [−5,5], isto é, 𝑧 ∈ [0,54]. Os limites da caixa podem 

mudar, conforme Figura 9, se forem alterados os intervalos das variáveis 

independentes da função.  

Figura 9. A caixa muda ao trocar o domínio da função. 

 

Fonte: Construção da autora. 

Observamos na Figura 9 que o Mathematica exibe automaticamente, na tela 

do computador, os valores da imagem da função definida por 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 4 

com domínio [−3,3] × [−3,3], isto é, 𝑧 ∈ [0,22]. Logo, esses valores de z dependem 

dos valores de x e y, que digitamos no momento de inserir o comando. 

Para gerar o gráfico de uma função de duas variáveis com os eixos 

coordenados centrados na origem, digitamos no comando Plot3D as opções: 

AxesOrigin → {0,0,0} e Boxed → False; o Mathematica, conforme mostra a Figura 10, 

gera o gráfico da função definida analiticamente por 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 4 com 

domínio [−5,5] × [−5,5]. 

Figura 10. Gráfico da função definida por f(x,y)=x2+y2+4  - eixos se intersecam em (0,0,0). 

 

Fonte: Construção da autora. 
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Novamente, afirmamos que, para gerar o gráfico de uma função de duas 

variáveis reais, o Mathematica apresenta-o de formas diferentes: os eixos de 

coordenadas estão centrados na origem (é um sistema de eixos com orientação 

positiva) e em uma caixa definida pelos eixos coordenados não centrados na 

origem (em que se pode observar os octantes do sistema cartesiano ℝ3 ), ou seja, 

o Mathematica mostra o gráfico do sistema cartesiano ℝ3 de maneiras diferentes, 

mas o conteúdo do gráfico é o mesmo. 

O Mathematica gera o gráfico em ℝ3, de outra forma, isto é, com os eixos 

coordenados interceptados ortogonalmente em suas origens, orientados e 

denotados por X, Y e Z. Para isso, em primeiro lugar, digitamos o comando Plot3D 

para produzir um gráfico de uma função de duas variáveis sem a caixa e sem os 

eixos, e em seguida digitamos o comando Graphics3D para gerar a representação 

gráfica do sistema cartesiano ℝ3. Após o uso do comando Show, determinamos a 

representação de uma função de duas variáveis nesse sistema cartesiano ℝ3, 

combinando os gráficos gerados pelo uso dos comandos Plot3D e Graphics3D.  Por 

exemplo, para gerar o gráfico da função definida analiticamente por 𝑓(𝑥, 𝑦) = 𝑥2 +

𝑦2 + 4 com domínio [−5,5] × [−5,5], como é mostrado na Figura 11, digitamos o 

comando Plot3D[𝑥2 + 𝑦2 + 4, {𝑥, −5,5}, {𝑦, −5,5}, 𝐴𝑥𝑒𝑠𝐿𝑎𝑏𝑒𝑙 → {"X", "Y", "Z"},

𝐵𝑜𝑥𝑒𝑑 → 𝐹𝑎𝑙𝑠𝑒, 𝐴𝑥𝑒𝑠 → 𝐹𝑎𝑙𝑠𝑒]. 

Figura 11. Gráfico da função definida por f(x,y)=x2+y2+4. 

 

Fonte: Construção da autora. 
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As opções usadas para representar os eixos coordenados: Arrowheads[s], 

onde s representa o tamanho da seta em escala s; Arrow[{pt1,pt2}] representa a 

seta com ponto inicial, representado por pt1, até o ponto final, representado por pt2; 

Line[{pt1,pt2}] representa a linha que une os pontos representados por pt1 e pt2, 

podem ser alteradas de acordo com o gráfico que desejamos representar, ou seja, 

conforme o domínio, a imagem da função. No entanto, para usar essas opções do 

comando Graphics3D, precisamos ter conhecimento e entender a sintaxe própria 

de cada um no momento de gerar um gráfico. 

Percebemos que o gráfico de uma função de duas variáveis auxilia-nos na 

observação das características dessa superfície, pois estamos interessados na 

representação de um conjunto de pontos (x,y,z) tal que (𝑥, 𝑦) ∈ 𝐷 ⊆ ℝ2 e 𝑧 = 𝑓(𝑥, 𝑦), 

onde 𝐷 representa o domínio da função. Ademais, afirmamos que a vantagem do 

Mathematica no ensino e aprendizagem do Cálculo em duas variáveis reais é que 

esse software gera gráficos diferentes do sistema de coordenadas retangulares 

XYZ, segundo o que for requerido pelo usuário, mas o conteúdo do gráfico é o 

mesmo. 

Assim, consideramos que essas diferentes formas de apresentar o gráfico 

de uma função de duas variáveis reais e de “ver” a representação gráfica ajudarão 

o aluno a mobilizar seus conhecimentos sobre as noções de Cálculo Diferencial em 

duas variáveis reais, quando tiverem que interpretar e analisar o gráfico de uma 

função de duas variáveis reais e, assim, dar solução a situações, pois, como afirma 

Duval (2004), a maneira de ver os gráficos depende da compreensão do 

funcionamento do sistema de representação. 

1.3  JUSTIFICATIVA DO TEMA DE PESQUISA 

Na leitura das ementas da disciplina de Matemática III, ou equivalentes, da 

Universidade do Callao, no Peru, permite-nos afirmar que o estudo de funções de 

duas variáveis reais tem lugar nos programas de Cálculo nos cursos de Engenharia, 

Economia, Administração, Matemática e Física. Relacionado a esse tema, um dos 

itens estudados é os valores máximos e mínimos de funções de duas variáveis 

reais, como pode ser visto no Anexo A (pag. 193). 
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Segundo o Ministério de Educação e Cultura de Brasil (MEC), no Parecer 

CNE/CES 11/2002, a formação do engenheiro tem por objetivo dotar o profissional 

dos conhecimentos necessários para o exercício de competências e habilidades 

relacionadas ao saber matemático associado a aspectos sociais e naturais 

inerentes às graduações de engenharia. Uma delas é aplicar conhecimentos 

matemáticos, científicos, tecnológicos e instrumentais à engenharia, estimulando a 

sua atuação crítica e criativa na identificação e resolução de problemas. 

Essa formação técnico-científica dos alunos de Engenharia é semelhante à 

formação do futuro engenheiro no Peru, além disso, segundo Nomura (2011), as 

disciplinas dos Conteúdos Curriculares presentes nas Diretrizes são agrupadas em 

conteúdos básicos, conteúdos profissionalizantes e específicos de cada 

engenharia. De maneira semelhante, são agrupadas as disciplinas no curso de 

Engenharia de Alimentos. Assim, a disciplina de Matemática III pertence ao grupo 

de conteúdos básicos. 

No curso de Engenharia de Alimentos, percebemos a necessária relação 

entre as disciplinas matemáticas e as disciplinas que compõem os futuros ciclos da 

graduação, visto que as primeiras são essenciais para a aprendizagem das 

segundas, por exemplo, a disciplina de Matemática III é essencial para o 

aprendizado das disciplinas de Termodinâmica, Engenharia I e Engenharia II. 

Segundo Cury (apud NOMURA, 2011, grifo nosso), o futuro engenheiro deve 

aplicar conhecimentos matemáticos, científicos e tecnológicos à engenharia, 

trabalhar em equipes multidisciplinares, sendo que todas as disciplinas da grade 

curricular deveriam cumprir essas exigências. Ademais, não se poderia pensar em 

trabalhar o Cálculo, as Equações Diferenciais, entre outros, de forma separada, 

como se os conteúdos pudessem permanecer guardados na memória do aluno, 

esperando para serem utilizados. 

Assim, de acordo com Nomura (2011), deve existir uma interdependência 

entre o ensino e aprendizagem, em relação à lógica da sequência do aprendizado 

e à forma com que os conteúdos são ligados entre si. Esse fato não é levado em 

conta na Faculdade de engenharia de Alimentos da Universidade Nacional do 

Callao, no Peru, no que diz respeito às disciplinas de matemática e às que 

pertencem ao grupo de conteúdos específicos da engenharia de Alimentos. 



39 

 
Visto que é necessário ligar a disciplina de Matemática III com as outras da 

grade curricular da engenharia de Alimentos, estamos interessados no ensino e 

aprendizagem da disciplina de Matemática III, em particular, no ensino e 

aprendizagem da noção de valores máximos e mínimos de funções de duas 

variáveis reais, buscando estabelecer relações com as demais disciplinas do curso. 

Ao lecionarmos essa disciplina, percebemos que os alunos têm dificuldades 

para se relacionarem com o estudo das funções de duas variáveis reais, o que se 

reflete no alto nível de reprovados nesse tópico. Nosso interesse pela noção de 

valores máximos e mínimos locais de funções de duas variáveis reais é porque 

quando os alunos estudam o tópico de Multiplicadores de Lagrange, utilizando 

representações gráficas, apresentam problemas em compreender esse tópico. 

Por isso, decidimos aprofundar o estudo dos valores máximos e mínimos 

locais de funções de duas variáveis reais com o objetivo de promover mudanças 

no processo de ensino e aprendizagem, porque ao darmos aulas no curso de 

Engenharia de Alimentos utilizamos apenas procedimentos algébricos e exercícios 

de aplicações diretas das definições e teoremas. 

Assim, no decorrer de nossas leituras e reflexões, identificamos que existem 

poucas pesquisas realizadas, tanto nacional quanto internacional, que tratam do 

ensino do Cálculo diferencial e integral em duas variáveis reais. Verificamos que 

essas pesquisas enfatizam a representação gráfica de funções de duas variáveis, 

na determinação de seu domínio e em curvas de nível, pois os alunos não 

conseguem interpretar em outro registro o que realizam no algébrico.  

Tais pesquisas fundamentaram-se na Teoria dos Registros de 

Representação Semiótica, propondo atividades que possibilitavam a conversão 

entre registros. Basearam-se também na percepção de registros gráficos no plano 

e no espaço de tal maneira que os alunos faziam conjecturas a partir da intuição, 

permitindo a transição do Cálculo de uma variável real para duas variáveis reais, 

na medida em que o aluno mobilizava seus conhecimentos de cálculo de uma 

variável real. 

Em relação ao ambiente informático usado nas pesquisas, Henriques (2006), 

Carvalho e Pereira (2004) e Alves (2011) apresentaram as potencialidades de um 
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programa computacional que implementa um sistema de álgebra computacional 

(CAS), o Maple, para favorecer a aprendizagem de alguns conteúdos de Cálculo 

diferencial e integral de duas variáveis reais. 

Em relação ao Cálculo de integral dupla ou tripla e ao Cálculo diferencial em 

duas variáveis reais, Henriques (2006) e Alves (2011) afirmaram que o Maple pode 

realizar mudança de variáveis, cálculos de derivadas parciais, cálculo de primitivas 

de integrais iteradas, entre outras, fornecendo o resultado de maneira rápida, além 

de oferecer aos estudantes oportunidade de explorar ideias matemáticas, analisar 

contraexemplos e desenvolver a intuição necessária com a fim de evitar a 

algoritmização das atividades didáticas. 

Há pesquisas que usam como referência a Teoria dos Registros de 

Representação Semiótica para o estudo de funções de duas variáveis diretamente 

relacionado ao tratamento e conversão entre os registros algébrico e gráfico. No 

caso de Alves (2011), ele se interessa em investigar como o aluno percebe ou intui 

o comportamento das curvas de nível perto dos valores máximos e mínimos locais 

de funções de duas variáveis reais, e, no caso de Henriques (2006), como o aluno 

representa mentalmente uma região sólida. Em relação às representações gráficas 

em ℝ3, duas pesquisas usaram lápis e papel, e três delas, o ambiente 

computacional Maple. 

Tal constatação leva-nos a inferir que nossa contribuição com esta pesquisa 

será particular, uma vez que estamos interessados em estudar como o aluno 

desenvolve a visualização durante a aprendizagem dos valores máximos e mínimos 

locais de funções de duas variáveis reais e não apenas como os percebe, os intui 

ou os representa mentalmente. Para isso fizemos uma adaptação das apreensões 

do registro figural de Duval para o registro gráfico, dado que não existem estudos 

que expliquem essas apreensões neste registro.  

De acordo com os pesquisadores que usaram o software Maple, 

concordamos que constitui ferramenta importante para a visualização na 

aprendizagem dos valores máximos e mínimos locais de funções de duas variáveis 

reais. Tanto este quanto o software Mathematica são programas computacionais 

com um Sistema de Computação Algébrica (CAS). Assim, por já estar instalado no 

laboratório de computação da faculdade de Engenharia de Alimentos, onde 
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realizaremos a experimentação, e por não termos encontrado pesquisa alguma que 

o utilizasse como ferramenta na construção de noções de funções de duas 

variáveis, especificamente, para a determinação de valores de máximos e mínimos 

locaris dessas funções, optamos por sua utilização. 

No próximo passo, esclareceremos nosso referencial teórico que sustenta 

este trabalho, contribuindo para delimitar nosso problema e formular a questão de 

pesquisa e os objetivos. 

1.4  REFERENCIAL TEÓRICO 

Nessa parte da pesquisa apresentaremos o referencial teórico que sustenta 

este estudo: a Teoria dos Registros de Representação Semiótica, segundo Duval 

(1995), e a Teoria das Situações Didáticas de Brousseau (1998), com as quais 

nosso trabalho possui estreita relação. 

1.4.1  Registros de Representação Semiótica 

Duval (1995) afirma que a peculiaridade da aprendizagem das matemáticas 

considera que as atividades cognitivas essenciais, como a conceitualização, o 

raciocínio, a resolução de problemas e a compreensão de textos, requerem a 

utilização de sistemas de expressão, e de representação além da língua natural ou 

das imagens. Para o autor, o uso frequente de símbolos próprios da Matemática 

constitui uma maneira particular de comunicar e generalizar determinadas 

concepções relacionadas a suas diversas áreas, tais como: Aritmética, Geometria, 

Álgebra, Cálculo, Estatística etc.  

Para o autor é fundamental não confundir, em nenhum momento, os objetos 

matemáticos com suas representações, visto que um mesmo objeto matemático 

pode ter representações diferentes, pois o que importa é o objeto representado e 

não suas diversas representações semióticas possíveis. 

Assim, Duval (1995, p. 2) afirma que, “por sua pluralidade potencial, as 

diversas representações semióticas dos objetos matemáticos seriam então 

secundárias e superficiais à aprendizagem conceitual dos objetos”, pois, a confusão 
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entre o objeto matemático e sua representação propicia uma perda de 

compreensão por parte do aluno, dado que os conhecimentos adquiridos tornam-

se inutilizáveis no contexto da aprendizagem, seja por falta de atenção ou por 

permanecem como representações inertes que não sugerem nenhum tipo de 

tratamento. 

O autor considera que as representações podem ser mentais, 

computacionais e semióticas. As mentais consistem em um conjunto de imagens e 

de concepções que uma pessoa pode ter sobre um objeto ou sobre uma situação. 

As computacionais são aquelas cujo significante (o elemento tangível, perceptível 

ou material do signo) não requer visão do objeto, permitindo transformações 

algorítmicas de uma sucessão de significantes a outra, isto é, um conjunto de 

instruções necessárias para executar uma tarefa a fim de produzir uma resposta 

adequada à situação. “Trata-se de uma codificação da informação” (DUVAL, 

1995, p. 16).  

As representações semióticas, por sua vez, são determinadas por um 

sistema particular de signos, linguagem, escritura algébrica ou de gráficos 

cartesianos, podendo ser transformadas em representações equivalentes em outro 

sistema semiótico, possibilitando que o sujeito atribuia-lhes significados diferentes. 

Duval (2004, p. 43, tradução nossa) ressalta a importância da noção de 

sistema semiótico no estudo das representações semióticas: 

Um sistema semiótico considera regras, mais o menos explícitas, 

que permitem combinar os signos entre si, de modo que a 

associação formada tenha também um sentido. As possibilidades 

de combinação são as que dão a capacidade inventiva ao sistema 

semiótico permitindo efetuar, no seu interior, transformações de 

expressão ou de representação. Essas regras determinam o 

funcionamento do sistema, sua sintaxe em sentido amplo [...]. 

Para o autor, uma representação semiótica não pode ser entendida de forma 

independente do sistema que a produz. As especificidades do sistema semiótico 

que permitem a produção de uma representação são as que determinam a relação 

entre o conteúdo da representação e o objeto representado. 

As representações semióticas não podem ser preenchidas pelas 

representações mentais porque elas desempenham um papel primordial na 
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realização de diferentes funções cognitivas e na produção de conhecimentos. Além 

disso, “o desenvolvimento das representações mentais efetua-se como uma 

interiorização das representações semióticas da mesma maneira que as imagens 

mentais são uma interiorização das percepções” (DUVAL, 2009, p. 17). 

Segundo o autor, para que um sistema semiótico seja um registro de 

representação semiótica deve permitir três atividades cognitivas fundamentais 

ligadas a semiose:1 a formação, o tratamento e a conversão. 

A formação de uma representação dentro de um registro semiótico 

particular, seja para expressar uma representação mental, seja para evocar um 

objeto real, implica sempre uma seleção em um conjunto de caracteres e de 

determinações, constituindo o que queremos representar, envolvendo seleção de 

relações e de dados no conteúdo a representar. É a atividade que permite 

representar de alguma forma um determinado conjunto de conhecimentos. Salvo 

os casos de idiossincrasia, os signos utilizados pertencem a um sistema semiótico 

já constituído e já utilizado por outros: o enunciado de uma frase em certa língua 

natural, o desenho de uma figura geométrica, a expressão de uma fórmula, entre 

outros.  

Para Duval (1993), essa atividade implica uma seleção de relações e de 

dados no conteúdo a ser representado, que é feita em função de unidades e de 

regras de conformidade que são próprias do sistema empregado em que a 

representação é produto. As regras de conformidade são aquelas que definem um 

sistema de representação e, por consequência, os tipos de unidades constitutivas 

de todas as representações possíveis em um registro. 

Por exemplo, uma formação de uma representação semiótica, relacionada 

ao Hessiano de uma função no ponto (𝑥0, 𝑦0), pode ser dada conforme a 

representação a seguir: 𝐻(𝑥0, 𝑦0) = 𝑓𝑥𝑥(𝑥0, 𝑦0)𝑓𝑦𝑦(𝑥0, 𝑦0) − [𝑓𝑥𝑦(𝑥0, 𝑦0)]
2
. 

____________ 

1 É chamada semiose a apreensão ou a produção de uma representação semiótica (DUVAL, 1995, p. 2, 

tradução nossa). 
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Essa formação é feita em função das regras de conformidade próprias do 

sistema algébrico do cálculo diferencial de duas variáveis reais. Podemos 

considerar outra representação do Hessiano de uma função no ponto (𝑥0, 𝑦0), 

𝐻(𝑥0, 𝑦0) = |
𝑓𝑥𝑥(𝑥0, 𝑦0) 𝑓𝑥𝑦(𝑥0, 𝑦0)

𝑓𝑦𝑥(𝑥0, 𝑦0) 𝑓𝑦𝑦(𝑥0, 𝑦0)
|, 

cuja formação é feita em função das regras de conformidade próprias do sistema 

dos determinantes de uma matriz quadrada 2×2, em que o conteúdo da 

representação está dado como uma tabela retangular de 2×2. 

Concordamos com Duval (2011) quando afirma que a contribuição do 

computador com seus softwares é outro modo de produção de representações 

semióticas. Para produzir essas representações, o sujeito precisará compreender 

os comandos básicos do software em questão, além de conhecer as noções 

matemáticas envolvidas para uma representação adequada, o que é motivo 

suficiente para diferenciar o uso de softwares do uso de lápis e papel. Como o autor 

menciona, “os computadores constituem um modo fenomenológico2 de produção 

radicalmente nova” (DUVAL, 2011, p. 137).  

Para explicar a formação de uma representação gráfica de uma função de 

duas variáveis, com a utilização do software Mathematica, temos que considerar 

sempre o contato do sujeito com uma máquina. O software Mathematica, por meio 

de seu próprio menu de comandos, manda instruções ao seu núcleo para exibir na 

tela do computador, especificamente no caderno do Mathematica, a representação 

gráfica de uma função de duas variáveis reais. Por exemplo, para formar uma 

representação gráfica da função representada algebricamente por 𝑓(𝑥, 𝑦) = 𝑥3 +

3𝑥𝑦2 − 15𝑥 − 12𝑦, escrevemos o comando com suas opções respectivas: Plot3D[𝑥3 +

3𝑥𝑦2 − 15𝑥 − 12𝑦, {𝑥, −3,3}, {𝑦, −3,3}, 𝐴𝑥𝑒𝑠𝐿𝑎𝑏𝑒𝑙 → {"X", "Y", "Z"}], a seguir, 

pressionamos a tecla shift e enter, gerando dessa maneira o gráfico mostrado na 

Figura 12. 

 

____________ 

2 Segundo Husserl (2002, p. 11), “A palavra ‘fenomenologia’ agrupa a palavra ‘fenômeno’ e ‘logos’, significando 

etimologicamente o estudo ou a ciência do fenômeno. Por fenômeno, no sentido originário e mais amplo, 
entende-se por tudo o que aparece, que se manifesta ou se revela”. 
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Figura 12. Formação de uma representação gráfica no Mathematica. 

 

Fonte: Construção da autora. 

Como mencionamos anteriormente, podemos, com ajuda de um comando 

do Mathematica, formar outra representação gráfica da função representada 

algebricamente por 𝑓(𝑥, 𝑦) = 𝑥3 + 3𝑥𝑦2 − 15𝑥 − 12𝑦, conforme mostra a Figura 13, 

digitamos o comando: 

Plot3D[𝑥3 + 3𝑥𝑦2 − 15𝑥 − 12𝑦, {𝑥, −3,3}, {𝑦, −3,3}, 𝐴𝑥𝑒𝑠𝐿𝑎𝑏𝑒𝑙 → {"X", "Y", "Z"},

𝐴𝑥𝑒𝑠𝑂𝑟𝑖𝑔𝑖𝑛 → {0,0,0}, 𝐵𝑜𝑥𝑒𝑑 → 𝐹𝑎𝑙𝑠𝑒], 

a seguir teclamos shif e enter. 

Figura 13. Outra formação de uma representação gráfica no Mathematica. 

 

Fonte: Construção da autora. 
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Podemos observar outra formação da representação gráfica da mesma 

função de duas variáveis, mas o conteúdo da representação é o mesmo, pois nos 

dois casos estamos representando o conjunto de todos os pontos (x,y,z) tal que 

z=f(x,y) e (x,y) está no domínio de f. 

Segundo Duval (2011), com quem concordamos, o menu de comandos de 

cada software permite mobilizar atividades cognitivas como, por exemplo, o 

conhecimento de termos que designam os objetos matemáticos. 

O tratamento de uma representação semiótica é a transformação de uma 

representação (inicial) em outra representação (terminal) em relação a uma 

questão, a um problema ou a uma necessidade, que fornecem o critério de parada 

na série de transformações efetuadas. Para Duval (1995, p.39, tradução nossa), 

“um tratamento é uma transformação da representação interna em um registro de 

representação ou em um sistema”. Por exemplo, o cálculo é um tratamento interno 

no registro de uma escritura simbólica de algarismos e de letras, e a inferência é 

uma forma de tratamento em língua natural. Duval (1995) ainda explica que há 

regras de tratamento próprio a cada registro, e que sua natureza e seu número 

variam consideravelmente de um registro para outro. 

Por exemplo, o registro algébrico do cálculo diferencial de funções de duas 

variáveis oferece o seguinte tratamento para encontrar o valor do Hessiano da 

função representada algebricamente por 𝑓(𝑥, 𝑦) = 𝑥4 + 𝑦4 − 4𝑥𝑦 + 1 no ponto de 

coordenadas (0,0), 𝑓𝑥 = 4𝑥3 − 4𝑦, 𝑓𝑦 = 4𝑦3 − 4𝑥, 𝑓𝑥𝑥 = 12𝑥2, 𝑓𝑥𝑦 = −4, 𝑓𝑦𝑦 = 12𝑦2, 

𝐻(𝑥0, 𝑦0) = 𝑓𝑥𝑥(𝑥0, 𝑦0)𝑓𝑦𝑦(𝑥0, 𝑦0) − [𝑓𝑥𝑦(𝑥0, 𝑦0)]
2
= 144𝑥0

2𝑦0
2 − 16 = −16. 

Ou seja, esse tratamento utiliza um sistema de escritura das derivadas 

parciais de primeira ordem e de segunda ordem, e as regras operacionais 

intrínsecas à noção de derivadas parciais. 

Segundo Duval (2011), quando afirma que o computador constitui um modo 

fenomenológico de produção de representações semióticas, mostra que está 

fundamentada na aceleração de tratamentos. 

Eles exibem no monitor tão rapidamente quanto à produção mental, 

mas com a potência de tratamento ilimitada em comparação com 

as possibilidades da modalidade gráfico-visual. Obtemos, 
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imediatamente, muito mais que tudo o que poderíamos obter à mão 

livre após, talvez, vários dias de escritas e cálculos ou construção 

de figuras (DUVAL, 2011, p. 137). 

Além disso, o autor sustenta que “a novidade fenomenológica se deve ao 

fato de que as representações semióticas não discursivas tornam-se manipuláveis 

como objetos reais” (DUVAL, 2011, p. 137). Para o autor, o aspecto dinâmico de 

deslocá-las, fazendo-as rodar, ou estendê-las a partir de um ponto, permite a 

função de simulação. 

Para explicar o tratamento de uma representação gráfica de uma função de 

duas variáveis com a utilização do software Mathematica, temos que considerar o 

contato do sujeito com uma máquina. O tratamento é feito por meio do menu de 

comandos e/ou deslocando manualmente o mouse. Por exemplo, para transformar 

a representação gráfica, mostrada na Figura 12, em outra representação, conforme 

Figura 14, escrevemos o comando ContourPlot3D[z==28, {x,-3,-1}, {y,-2,0}, {z,0,29}, 

AxesLabel → {“X”,“Y”,“Z”}], a seguir, digitamos o comando Show para mostrar os 

dois gráficos juntos, e teclamos shift e enter. 

Figura 14. Tratamento em uma representação gráfica. 

 

Fonte: Construção da autora. 

Esse mesmo tratamento poderia ser realizado para transformar a 

representação gráfica, Figura 13, na representação gráfica na Figura 15. Para isso, 

digitamos os mesmos comandos, ou seja, ContourPlot3D[z==28, {x,-3,-1}, {y,-2,0}, 

{z,0,29}, AxesLabel → {“X”,“Y”,“Z”}] e o comando Show, seguido de shift e enter. 
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Figura 15. Tratamento de uma outra representação gráfica. 

 

Fonte: Construção da autora. 

Assim, observamos que o tratamento é o mesmo dentro das duas diferentes 

representações gráficas, geradas pelo Mathematica, de uma mesma função de 

duas variáveis. 

Duval (1995) afirma que pela forma de tratamento, os registros são 

caracterizados como: multifuncionais (tratamentos não algoritmizáveis) e 

monofuncionais (tratamentos são algoritmizáveis), e suas formas em discursiva 

(língua natural, sistema de escritas) e não discursiva (figuras geométricas, gráficos 

cartesianos). 

A conversão de uma representação semiótica é a transformação de um 

objeto dado em um registro, em uma representação do mesmo objeto e em um 

outro registro. A conversão é, então, segundo Duval (1995), uma transformação 

externa em relação ao registro de representação de partida. 

Por exemplo no Quadro 1 evidenciamos representações do mesmo objeto, 

o Hessiano de uma função de duas variáveis, em três registros diferentes: de língua 

natural, algébrico e dos determinantes. 

Quadro 1. Representações de um mesmo objeto em três registros diferentes. 

O Hessiano de 

uma função de 

duas variáveis 

em um ponto 

crítico. 

𝑓𝑥𝑥(𝑥0, 𝑦0)𝑓𝑦𝑦(𝑥0, 𝑦0) − [𝑓𝑥𝑦(𝑥0, 𝑦0)]
2
 |

𝑓𝑥𝑥(𝑥0, 𝑦0) 𝑓𝑥𝑦(𝑥0, 𝑦0)

𝑓𝑦𝑥(𝑥0, 𝑦0) 𝑓𝑦𝑦(𝑥0, 𝑦0)
| 

Fonte: Próprio da autora. 

Percebemos que a operação de conversão requer que entendamos a 

diferença entre o conteúdo de uma representação e aquilo que representa. “Sem a 
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percepção dessa diferença, a atividade de conversão torna-se impossível ou 

incompreensível” (DUVAL, 1995, p. 41, tradução nossa).  

Na sequência, explicitamos uma conversão do registro algébrico de uma 

função de duas variáveis para o registro gráfico, utilizando o Mathematica. 

Começamos, conforme Quadro 2, considerando uma expressão algébrica de uma 

função de duas variáveis, por exemplo, 𝑓(𝑥, 𝑦) = 𝑥3 + 3𝑥𝑦2 − 15𝑥 − 12𝑦, em seguida, 

por meio de uma lista de termos próprios do sistema semiótico do Mathematica, 

digitamos o respectivo comando, ou seja, Plot3D[𝑥3 + 3𝑥𝑦2 − 15𝑥 − 12𝑦, {𝑥, −3,3},

{𝑦, −3,3}, 𝐴𝑥𝑒𝑠𝐿𝑎𝑏𝑒𝑙 → {"X", "Y", "Z"}], logo teclamos shift e enter para mostrar na tela 

do computador a representação gráfica dessa função de duas variáveis. 

Quadro 2. Conversão do registro algébrico para o registro gráfico. 

𝑓(𝑥, 𝑦) = 𝑥3 + 3𝑥𝑦2 − 15𝑥 − 12𝑦 

 

 

Fonte: Próprio da autora. 

Nessa etapa em que representamos uma função de duas variáveis em duas 

representações diferentes: a algébrica e a representação própria do Mathematica, 

mobilizamos atividades cognitivas, conhecendo os termos matemáticos em relação 

à escolha dos termos do comando. Concordamos com Duval (2011, p. 138) quando 

afirma que “um menu de comandos privilegia um registro de representação para 

obter a representação correspondente em outro registro”.  

No entanto, como afirmamos anteriormente (ver p. 35), o Mathematica gera 

outra representação gráfica, mas com o mesmo conteúdo da representação. Assim, 

a conversão considera a expressão algébrica da mesma função de duas variáveis, 

como anteriormente. A seguir, por meio de uma lista de termos próprios do sistema 

semiótico do Mathematica, digitamos o mesmo comando com mais duas opções, 
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ou seja, Plot3D[𝑥3 + 3𝑥𝑦2 − 15𝑥 − 12𝑦, {𝑥, −3,3}, {𝑦, −3,3}, 𝐴𝑥𝑒𝑠𝐿𝑎𝑏𝑒𝑙 → {"X", "Y", "Z"},

𝐴𝑥𝑒𝑠𝑂𝑟𝑖𝑔𝑖𝑛 → {0,0,0}, 𝐵𝑜𝑥𝑒𝑠 → 𝐹𝑎𝑙𝑠𝑒], em seguida teclamos shift e enter para mostrar 

na tela do computador outra representação gráfica dessa função de duas variáveis. 

Quadro 3. Conversão do registro algébrico para outro registro gráfico. 

𝑓(𝑥, 𝑦) = 𝑥3 + 3𝑥𝑦2 − 15𝑥 − 12𝑦 

 

 

Fonte: Próprio da autora. 

Visto que as duas diferentes representações gráficas realizadas com a 

utilização do Mathematica permitem as três atividades cognitivas fundamentais 

ligadas a semiose, denominamo-las de Registros Gráficos representados no CAS 

Mathematica. O registro representado dentro de uma caixa definida pelos eixos 

coordenados será chamado de Registro Gráfico CAS_MATH, enquanto o outro 

registro representado de maneira que os eixos coordenados são orientados 

positivamente será chamado de Registro Gráfico CAS.  

Os dois registros representam o sistema de coordenadas retangulares no 

espaço com a regra de mão direita. Isto é, quando os dedos da mão direita são 

fechados de tal modo que se curvam do eixo x positivo em direção do eixo y positivo, 

então o polegar aponta na direção do eixo z positivo. 

Duval (1993) ressalta que a conversão não deve ser confundida com a 

codificação, pois:  

refere-se a “transcrição” de uma representação em um outro 

sistema semiótico diferente daquele em que é dado inicialmente. 

Esta transcrição é feita “em meio de uma série de substituições” 

aplicando regras de correspondência ou utilizando listas de 

substituições anteriormente estabelecidas. Estas substituições são 
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realizadas diretamente sobre os significantes que compõem a 

representação, sem considerar a organização da representação 

nem o que ela representa. (DUVAL, 1993, p. 43, tradução nossa) 

Para Duval (1988), a codificação não é suficiente para construir uma 

representação gráfica. Neste sentido, afirma que a leitura das representações 

gráficas, particularmente as representações de uma função de primeiro grau, 

requer a descriminação das variáveis visuais pertinentes e a percepção das 

variações correspondentes da escritura algébrica. As variáveis visuais são as 

unidades significante elementares do registro gráfico. Essa leitura é uma 

abordagem de interpretação global que supõe uma atitude contrária ao uso das 

regras de codificação para construir representações gráficas fundamentadas na 

associação entre um ponto e um par ordenado de números. 

O autor distingue três tipos de abordagem que levam em conta diferentes 

aspectos do gráfico: a abordagem ponto a ponto, a abordagem de extensão do 

traçado efetuado e a abordagem de interpretação global de propriedades figurais. 

Duval (1988) afirma que essa última abordagem é deixada de lado no ensino, uma 

vez que depende de uma análise semiótica visual e algébrica. 

Para o autor, as representações gráficas são definidas pela abordagem 

ponto a ponto, o que permite identificar um ponto por um par de números e vice-

versa. Esta abordagem funciona bem quando se quer traçar o gráfico de uma 

função de primeiro grau ou o gráfico de uma função de segundo grau, mas limita-

se a alguns valores particulares e aos pontos marcados no plano cartesiano.  

A segunda abordagem, segundo Duval (1988), corresponde às atividades de 

interpolação e extrapolação, as quais se apoiam no que se denominou de aspectos 

produtores e redutores das representações gráficas. Esta abordagem de extensão 

mantida é puramente mental, pois não produz traços complementares e 

explicativos como uma mudança local na graduação dos eixos para ampliar uma 

parte do traçado. Nesta abordagem, como na anterior, consideram-se os dados do 

traçado e não as variáveis visuais relativas da representação gráfica. Da mesma 

forma, o tratamento é orientado para encontrar valores específicos sem se prender 

à forma da expressão algébrica. 
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A última abordagem corresponde ao tratamento global e qualitativo das 

propriedades dos gráficos. Segundo o autor, o conjunto traço/eixo forma uma 

imagem que representa um objeto descrito por uma expressão algébrica. Toda 

modificação desta imagem, que leva a uma modificação na escrita da expressão 

algébrica correspondente, determina uma variável visual pertinente para a 

interpretação do gráfico.  

É importante então, ver todas as modificações conjuntas da imagem e da 

expressão algébrica. “Com esta abordagem não estamos mais na presença da 

associação ‘um ponto – um par de números’, mas na associação ‘variável visual de 

representação – unidade significante da expressão algébrica’”, (DUVAL, 1988, p. 

237, tradução nossa). Para o autor, a prática sistemática da abordagem ponto a 

ponto não favorece a abordagem de interpretação global, porque tira a ênfase das 

variáveis visuais. 

Assim, para Duval (1995), a atividade de conversão é menos imediata e 

menos simples do que se tende a crer. É necessário 

[...] analisar como pode ser efetuado o procedimento de 

correspondência sobre o qual repousa toda conversão de 

representação. A correspondência de duas representações 

pertencentes a registros diferentes pode estar estabelecida 

localmente por uma correspondência associativa das unidades 

significantes elementares constitutivas de cada um dos dois 

registros (DUVAL, 1995, p. 45, tradução nossa). 

Nesse sentido, Duval (1995, p. 49) enuncia que para ser congruente, uma 

conversão entre registros de representação semiótica deve satisfazer três critérios: 

O primeiro critério é a possibilidade de uma correspondência “semântica” dos 

elementos significantes: a cada unidade significante simples de uma das 

representações, pode-se associar uma unidade significante elementar. Considera-

se como unidade significante elementar toda unidade que se destaca do “léxico” de 

um registro.  

O segundo critério é a univocidade “semântica” terminal: a cada unidade 

significante elementar da representação de partida, corresponde uma única 

unidade significante elementar no registro da representação de chegada, e o 

terceiro critério é relativo à organização das unidades significantes. As 
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organizações respectivas das unidades significantes de duas representações 

comparadas conduzem a apreender as unidades em correspondência semântica, 

segundo a mesma ordem nas duas representações. 

No Quadro 4, por exemplo, mostra-se uma conversão congruente do registro 

em língua natural para o registro simbolico, do gráfico de uma função de duas 

variáveis reais. É congruente porque podemos verificar que há correspondência 

semântica, pois há uma unidade significante em língua natural para cada unidade 

significante no registro simbólico.  

Constatamos ainda que há univocidade semântica. Cada unidade 

significante (registro de partida) relaciona-se com um único símbolo no registro de 

chegada. A conversão atende também ao terceiro critério de congruência, dado que 

a ordem da sentença, em língua natural, corresponde à ordem dos símbolos 

utilizados no registro simbolico. 

Quadro 4. Exemplo de conversão congruente. 

O conjunto de todas as ternas ordenadas de 

números reais em que a função associa a cada 

par ordenado de números reais um único 

número real, e esse par ordenado está no 

domínio de uma função de duas variáveis. 

{(𝑥, 𝑦, 𝑧) ∈ ℝ3: 𝑧 = 𝑓(𝑥, 𝑦) 𝑒 (𝑥, 𝑦) ∈ 𝐷} 

Fonte: Próprio da autora. 

Desse modo, por congruência, definimos o grau de correspondência 

semântica, de univocidade semântica terminal e de organização sintática das 

unidades significantes entre um registro de representação de partida e um registro 

de representação de chegada, em um processo de conversão. Segundo Duval 

(1995), quando um desses critérios não for satisfeito, as representações são não 

congruentes. Além disso, o autor afirma que uma análise de congruência exige a 

discriminação das unidades significativas próprias a cada registro de 

representação. 

Por exemplo, na atividade de conversão entre a representação gráfica de um 

plano tangente a uma superfície no ponto 𝑃(𝑥0, 𝑦0, 𝑧0) e sua respectiva 

representação algébrica, conforme mostra o Quadro 5, é a interpretação global que 

nos permite associar as variáveis visuais próprias do gráfico: as coordenadas 
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(𝑥0, 𝑦0, 𝑧0) do ponto na superfície, representado por P, a curva de interseção da 

superfície com o plano x=x0, que passa pelo ponto represando por P, a curva de 

interseção da superfície com o plano y=y0, que passa por esse mesmo ponto, as 

retas tangentes (o vetor tangente é seu vetor direção) a cada curva em P, com as 

unidades significantes da expressão algébrica, isto é, a derivada parcial de uma 

função de duas variáveis em direção de x, a derivada parcial de uma função de 

duas variáveis em direção de y, os símbolos de variáveis (x, y e z), o símbolos de 

operações (+,-,=), o símbolo das coordenadas do ponto (𝑥0, 𝑦0 e 𝑧0). 

Quadro 5. Conversão não congruente do registro gráfico para o registro algébrico. 

 

 

Fonte: Mora, 2012, p. 122. 

Nesta conversão não existe uma correspondência semântica dos elementos 

significantes de cada registro, pois não há nenhuma variável visual (registro de 

partida) para cada unidade significante no registro algébrico, porém, não há 

univocidades semântica, sendo possível verificar que as variáveis visuais não 

correspondem à sintaxe do registro algébrico. 

Notamos, então, que é necessário, para desenvolver a atividade cognitiva 

requerida pelo Cálculo diferencial em duas variáveis reais, que o aluno, no 

momento de resolver um problema, transite pelos diversos registros de 

representação semiótica: o registro em língua natural, o registro algébrico, o 

registro gráfico e/ou o registro gráfico CAS. Neste último registro, é muito 

importante, como mencionamos anteriormente (ver p. 45), que o aluno compreenda 

os comandos básicos do Mathematica, além de conhecer as noções matemáticas 

envolvidas para uma representação adequada.  
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É importante, para uma leitura dos registros gráficos, que o aluno articule os 

valores visuais do registro gráfico e/ou registro gráfico CAS com os valores 

significantes dos registros algébricos empregados em definições e com os 

teoremas, pois é nesse nível de correspondência, como afirma Duval (2004), que 

se pode efetuar a coordenação de diferentes registros de representação. 

Visualizar um gráfico requer a interpretação de uma representação gráfica. 

Como afirma o autor, para essa interpretação, é importante a descriminação das 

variáveis visuais, expondo essa representação a todas as variações possíveis, com 

a condição de que as formadas desse modo ainda continuem tendo sentido. Assim, 

buscamos em Duval (1994) a noção de apreensão de uma figura geométrica para 

compreender essas variações possíveis no registro gráfico.  

Existem quatro formas de apreender uma figura: a perceptiva, a discursiva, 

a sequencial e a operatória. A apreensão perceptiva é aquela que permite identificar 

ou reconhecer uma forma ou um objeto matemático, seja no plano ou no espaço. 

Como afirma Duval (1994, p. 124, tradução nossa), “a apreensão perceptiva tem a 

função epistemológica de identificação dos objetos em duas ou três dimensões. 

Isto é feito por processos cognitivos efetuados automaticamente e, assim, de forma 

inconsciente”. 

Por exemplo, temos o seguinte objeto matemático representado no plano, 

conforme mostra a Figura 16. A apreensão perceptiva da figura permite identificar 

a representação de um quadrado. 

Figura 16. Apreensão perceptiva de uma figura. 

 

Fonte: Própria da autora. 

No Cálculo Diferencial de duas variáveis, por exemplo, a apreensão 

perceptiva do gráfico, mostrado na Figura 17, permite identificar um paraboloide. 
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Figura 17. Apreensão perceptiva de um registro gráfico. 

 

Fonte: Construção da autora. 

 

Do ponto de vista cognitivo, essa apreensão requer mais do sujeito do que 

a apreensão perceptiva do quadrado, pois no gráfico de uma função de duas 

variáveis existe o tipo de variável (dependente e independente), os valores das 

variáveis X, Y e Z e uma leitura dos eixos. Isso nos permite afirmar que a apreensão 

perceptiva do registro gráfico é mais complexa do que na geometria. Esta afirmação 

é mais evidente quando a apreensão perceptiva do gráfico, mostrado na Figura 18, 

permite identificar as mesmas características anteriormente mencionadas, porque, 

como já explicitamos (ver p. 30), a localização do valor mínimo e o valor de mínimo 

requer mais recursos cognitivos do sujeito do que a segunda (apreensão do registro 

gráfico mostrado na Figura 17). 

Figura 18. Paraboloide no registro gráfico CAS_MATH. 

 

Fonte: Construção da autora. 

Para os outros tipos de apreensões, fizemos a mesma afirmação: no cálculo 

diferencial de duas variáveis são mais complexas, em particular, quando se trata 

do registro gráfico CAS_MATH. 
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A apreensão discursiva de uma figura, para Duval (1994), explicita outras 

propriedades matemáticas de uma figura, como aquelas indicadas por uma legenda 

ou pelas hipóteses. Essas explicitações são de natureza dedutiva, e sua função 

epistemológica é de demonstração, conforme Figura 19. 

Figura 19. Apreensão discursiva de uma figura. 

 

Fonte: Almouloud, 2003, p. 129. 

No Cálculo diferencial de duas variáveis, podemos estabelecer como 

exemplo que a apreensão discursiva do gráfico, mostrado na Figura 20, seria a 

explicitação dos elementos do gráfico, considerando a semântica das propriedades 

do objeto.  

Figura 20. Apreensão discursiva do registro gráfico. 

 

Suponha que 𝑓(𝑥, 𝑦) tenha um 

máximo relativo em (𝑥0, 𝑦0) e que as 

derivadas parciais de 𝑓 existem em 

(𝑥0, 𝑦0), as curvas da superfície 

representada por 𝑧 = 𝑓(𝑥, 𝑦) sobre 

os planos 𝑥 = 𝑥0 e 𝑦 = 𝑦0 tem retas 

tangentes horizontais em (𝑥0, 𝑦0), 

logo 𝑓𝑥(𝑥0, 𝑦0) e 𝑓𝑦(𝑥0, 𝑦0) = 0. 

Fonte: Anton, 2005, p. 998. 

A apreensão sequencial, segundo Duval (1994), trata-se da ordem de 

construção de uma figura. Essa ordem não depende só das propriedades 

matemáticas da figura, mas também das ferramentas técnicas utilizadas (a régua, 

o compasso e os comandos do menu de um software, por exemplo). Essa 
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apreensão é requerida sempre que se deseja construir uma figura ou descrever a 

sua construção. 

A apreensão sequencial de um triângulo equilátero, por exemplo, seria a 

sequência de passos para a construção deste triângulo. 

Figura 21. Apreensão sequencial de um triângulo equilátero. 

 

Fonte: Vieira, 2008, p. 35 

No Cálculo diferencial de duas variáveis, podemos estabelecer como 

exemplo que a apreensão sequencial do gráfico para localizar o valor máximo de 

uma função de duas variáveis reais no software Mathematica, o que seria a 

sequência de passos, conforme mostra o Quadro 6, para localizar esse valor no 

gráfico em que a superfície tem um plano tangente horizontal. 

Quadro 6. Apreensão sequencial do máximo local de uma função de duas variáveis. 

Passo 1: Representar graficamente a função de duas variáveis, ou seja, escrever no 
caderno do Mathematica, de maneira sequencial, o comando: 

S = Plot3D[𝑥3 + 3𝑥𝑦2 − 15𝑥 − 12𝑦, {𝑥, −3,3}, {𝑦, −3,3}, AxesLabel → {"X", "Y", "Z"}]. 

Passo 2: Representar graficamente um plano horizontal, isto é, escrever no caderno do 
Mathematica, de maneira sequencial, o comando: 

P = ContourPlot3D[𝑧 == 10, {𝑥, −4,−1}, {𝑦, −4,0}, {𝑧, 8,15}, AxesLabel → {"X", "Y", "Z"}]. 

Passo 3: Mostrar um corte horizontal, ou seja, escrever o comando Show[S,P]. 

Passo 4: Representar graficamente outro plano horizontal, isto é, escrever no caderno 
do Mathematica, de maneira sequencial, o comando: 

P1 = ContourPlot3D[𝑧 == 20, {𝑥, −4,−1}, {𝑦, −4,0}, {𝑧, 18,25}, AxesLabel → {"X", "Y",
"Z"}]. 

Passo 5: Mostrar outro corte horizontal, ou seja, escrever o comando Show[S,P, P1]. 

Passo 6: Representar graficamente outro plano horizontal, isto é, escrever no caderno 
do Mathematica, de maneira sequencial, o comando: 

ContourPlot3D[𝑧 == 28, {𝑥, −4,−1}, {𝑦, −4,0}, {𝑧, 25,30}, AxesLabel → {"X", "Y", "Z"}]. 
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Passo 7: Mostrar o terceiro corte horizontal, ou seja, escrever o comando Show[S,P, P1, 
P2]. 

Passo 8: O plano horizontal representado por z=28 é tangente à superfície em um ponto. 
O valor z=28 é o possível valor máximo da função de duas variáveis. 

 

Fonte: Construção da autora. 

Segundo Duval (1994), a apreensão operatória corresponde à 

transformação e/ou modificação de uma figura inicial em outras figuras possíveis e 

na reorganização perceptiva dessas modificações para mostrar a ideia de uma 

solução de uma determinada situação problemática. Sua função é de exploração 

heurística, porque frequentemente a figura geométrica é transformada em outras 

para mostrar uma ideia da solução de um problema ou de uma demonstração.  

Duval (1993) distingue três tipos de modificações, essas modificações 

podem ser da mesma forma e orientação, mas com variação de grandeza 

(modificações óticas), da mesma grandeza e forma, mas com variação de 

orientação: rotação, translação (modificações posicionais), e de decomposição e 

recomposição (modificações mereológicas), procurando reciprocidade entre o 

desenho e a representação mental. 

Por exemplo: a modificação mereológicas da figura geométrica, mostrada na 

Figura 22, em que se destaca a operação de reconfiguração (AMEC, MEF, MBFD) 

do quadrado ABCD. 
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Figura 22. Exemplo de modificação mereológicas do quadrado ABCD. 

 

Fonte: Duval, 1988, p. 65. 

No registro gráfico, distinguimos três modificações: 

Ótica – quando, pressionando a tecla Ctrl e clicando o botão esquerdo do 

mouse, deslocamos fisicamente o mouse e manipulamos o gráfico de tal maneira 

que o ampliamos ou o reduzimos, ou seja, há variação de grandeza e constância 

de forma. Por exemplo, conforme Figura 23, temos a ampliação do gráfico. 

Figura 23. Exemplo de modificação ótica. 

  

Fonte: Construção da autora. 

Posicional – quando, por meio de deslocações físicas do mouse, podemos 

rotar o gráfico ao redor do eixo z, rotar ao redor do plano xy e trasladá-lo, ou seja, 

mantendo a mesma grandeza e forma, mas variando a posição. Por exemplo, a 

Figura 24 mostra a rotação do gráfico ao redor do eixo z. 
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Figura 24. Exemplo de modificação posicional. 

  

Fonte: Construção da autora. 

Mereológica – quando, por meio de dois comandos do software, geramos 

os cortes nos planos horizontais z=k, mostrando onde o gráfico da função de duas 

variáveis reais tem altura k. Por exemplo, conforme mostra a Figura 25, temos o 

corte do gráfico no plano horizontal z=0. Isto é, escrevemos o comando 

ContourPlot3D[{𝑧 == 20}, {𝑥, −3,3}, {𝑦, −3,3}, {𝑧, 0,25}, AxesLabel → {"X", "Y", "Z"}] e a 

seguir o comando Show para gerar os cortes no gráfico. 

Figura 25. Exemplo de modificação mereológica. 

  

Fonte: Construção da autora. 

Estamos interessados em estudar as atividades cognitivas que o aluno 

mobiliza para desenvolver a visualização dos valores máximo e mínimo de uma 

função de duas variáveis reais, visto que “ver” um gráfico não é suficiente para 

compreender o que realmente está representado, não permitindo um tratamento 

global e qualitativo das propriedades do gráfico. 
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1.4.2  Visualização 

Segundo Duval (2004), as representações gráficas cartesianas têm um uso 

relativamente extensivo. São encontrados não somente nos manuais ou nos artigos 

científicos, mas também nos magazines. Esses gráficos podem ser vistos de duas 

maneiras: uma pontual, que dá a indicação de um valor em um momento dado, e 

outra icônica, que evoca o alto e o baixo, as subidas suaves ou abruptas a partir do 

nível de base. No entanto,  

nenhuma das duas maneiras de ver correspondem à maneira útil 

de ver desde um ponto de vista matemático, ou seja, à maneira de 

ver que permite visualizar uma relação entre dois conjuntos de 

valores.  Em matemática, os gráficos cartesianos são utilizados 

sempre em articulação com outro registro de representação e, 

ademais, devem permitir tratamentos qualitativos próprios a este 

modo de visualização [...] (DUVAL, 2004, p. 66, tradução nossa). 

O autor afirma que, em cada uma destas três maneiras de ver, podemos 

distinguir o que se observa no gráfico cartesiano e o que os aspectos observados 

permitem identificar. Um dos problemas específicos da aprendizagem é fazer 

passar os alunos de uma apreensão local e icônica a uma apreensão global 

qualitativa. Somente com este tipo de apreensão é que se pode fazer coordenação 

com o registro da escritura algébrica de relação, podendo os gráficos cartesianos 

funcionar como uma visualização. 

Para Duval (1999), a visualização é uma atividade cognitiva intrinsecamente 

semiótica, ao contrário da visão que fornece um acesso direto ao objeto. Salienta 

que a visualização baseia-se na produção de uma representação semiótica, visto 

que mostra relações, ou melhor, organização de relações entre unidades 

significantes de representação. Essas unidades significantes próprias dos gráficos 

são as variáveis visuais e podem ser, por exemplo, a inclinação de um traço, 

interseção com os eixos, etc. 

O autor sublinha que, para construir um gráfico, requer-se somente calcular 

algumas coordenadas e traçar uma reta e uma curva: sempre partindo das tabelas 

dos dados, ou das equações. Notamos que esse tratamento funciona bem nos 

casos mais simples, como o traçado de funções de uma variável, particularmente, 

função afim e função quadrática. Mas, o autor afirma que a visualização requer a 
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mudança oposta, ou seja, deve partir do gráfico para alguns valores visuais que 

apontam para as características do fenômeno representado ou que corresponde a 

um tipo de equação e a alguns valores característicos na equação. É aqui que 

encontramos o procedimento fundamental de interpretação global e qualitativo. 

Para Duval (1988), a discriminação das unidades visuais de uma 

representação gráfica não é evidente, mas sim a discriminação das unidades 

significantes de uma expressão algébrica. Têm-se: os  símbolos relacionais (<, >, 

=, ...); de operações ou de sinais (+, -); de variável; de expoente, de coeficiente ou 

de constante. O autor distingue: duas variáveis visuais gerais e três variáveis 

particulares relativas ao caso em que o gráfico é de uma função afim ou quadrática. 

As duas variáveis gerais são: implantação de uma tarefa, isto é, o que se 

destaca como figura, um traço ou uma zona; a forma de uma tarefa, ou seja, o 

traçado que delimita ou não uma zona é uma reta ou uma curva. Se for curva, é 

fechada ou aberta.  

As três variáveis particulares, como vemos no Quadro 7, são: o sentido da 

inclinação de um traço; os ângulos do traço com os eixos, e a posição do traço em 

relação à origem do eixo vertical. Trata-se das variáveis visuais e das unidades 

simbólicas correspondentes para a função linear afim representada por 𝑦 = 𝑎𝑥 + 𝑏. 

Segundo Duval (1988), o que importa nessa expressão é o coeficiente a e a 

constante b. 

 
Quadro 7. Variáveis visuais e unidades simbólicas para y=ax+b no plano cartesiano. 

Variáveis visuais 
Unidades simbólicas 

correspondentes 

Sentido de inclinação 
𝑎 > 0 
𝑎 < 0 

Ângulo com os eixos 
𝑎 = 1 
𝑎 < 1 

𝑎 > 1 

Posição sobre o eixo 
𝑏 > 0 
𝑏 = 0 

𝑏 < 0 

Fonte: Adaptado de Duval (1988, p. 240). 
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Os exemplos considerados pelo autor para explicar esses procedimentos 

estão particularmente vinculados aos casos mais simples de funções de uma 

variável. Contudo, os problemas que nos interessam, referentes ao valor máximo e 

mínimo de uma função de duas variáveis, revelam a seguinte questão, dado que o 

autor sublinha a importância da discriminação de variáveis visuais na interpretação 

das representações gráficas: como descriminar as variáveis visuais na 

representação gráfica de uma função de duas variáveis? 

Prolongando, para as funções de duas variáveis, a ideia de variáveis visuais 

consideradas por Duval (1988), distinguimos: 

 Duas variáveis visuais gerais relativas ao caso em que o gráfico é uma 

superfície: 

 A implantação da tarefa, ou seja, o que se destaca como representação 

gráfica no espaço: a curva e a superfície cuja representação algébrica 

é conhecida ou não. Por exemplo, na Figura 26, o que se destaca é 

uma superfície conhecida chamada paraboloide circular. 

Figura 26. Exemplo de implantação da tarefa. 

 

Fonte: Construção da autora. 

 A forma da tarefa: a curva traçada correspondente aos cortes verticais, 

são retas ou curvas. Se corresponder aos cortes horizontais, são 

curvas fechadas ou abertas. A curvatura da superfície (se curva para 

baixo ou para cima). Por exemplo, a Figura 27 mostra-nos o traço da 

superfície no plano representado por y=3, ou seja, um corte vertical. 
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Figura 27. Exemplo de forma de tarefa. 

 

Fonte: Construção da autora. 

 Variáveis específicas: 

 Posição da superfície traçada em relação aos eixos coordenados 

orientados positivamente e traçada dentro de uma caixa definida pelos 

eixos coordenados, respectivamente, conforme Quadro 8; 

Quadro 8. Posições de uma superfície. 

  

Fonte: Construção da autora. 

 Relação dos pontos da superfície com respeito ao eixo z. Por exemplo, 

conforme Figura 28 em que se mostra o conjunto de todos os pontos 

da superfície com imagem z=-15; 

Figura 28. Exemplo da relação dos pontos da superfície com o eixo z. 

 

Fonte: Construção da autora. 
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 A posição da superfície em relação ao plano perpendicular ao eixo z 

(está sobre o plano, debaixo de ou atravessa). Por exemplo, conforme 

mostra a figura, a superfície está completamente sobre o plano z=0; 

Figura 29. Exemplo da posição do paraboloide em relação ao plano z=0. 

 

Fonte: Construção da autora. 

 Variação do valor de z em relação aos valores de x e y da curva de 

interseção da superfície com o plano perpendicular ao eixo z. Por 

exemplo, conforme Figura 30, mostramos os traços nos planos z=k e 

observamos como o valor de z decresce até que o traço seja um ponto. 

Figura 30. Exemplo da variação de z até atingir o valor mínimo. 

 

Fonte: Construção da autora 

Essas variáveis visuais desempenham um papel importante na interpretação 

das superfícies, bem como na conversão entre registros de representação e na 

coordenação dos gráficos, com as diferentes expressões algébricas presentes nos 

diferentes teoremas e definições apresentadas nas práticas do cálculo diferencial 

de funções de duas variáveis. Por exemplo, o teorema: 
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Se f tiver um extremo relativo em um ponto (𝑥0, 𝑦0) e se as derivadas parciais de 

primeira ordem de f existirem nesse ponto, então 𝑓𝑥(𝑥0, 𝑦0) = 0 e 𝑓𝑦(𝑥0, 𝑦0) = 0. 

Neste registro está presente a expressão algébrica 𝑓𝑥(𝑥0, 𝑦0) = 0 e 

𝑓𝑦(𝑥0, 𝑦0) = 0. Identificamos, na sequência, as variáveis significantes dessa 

expressão algébrica: o símbolo relacional ( =.); o símbolo da função de duas 

variáveis ( f ), a derivada parcial de uma função de duas variáveis em direção de x 

( 𝑓𝑥 ), em direção de y ( 𝑓𝑦 ), o símbolo da abcissa do ponto (𝑥0), o símbolo da 

ordenada do ponto (𝑦0), o par ordenado (𝑥0, 𝑦0) e o número zero. 

No registro gráfico, mostrado na Figura 31, por exemplo, identificamos as 

variáveis: posição da superfície, traçada dentro de uma caixa limitada pelos eixos 

coordenados (Registro gráfico CAS_MATH); relação dos pontos da superfície com 

respeito ao eixo z (o conjunto de todos os pontos da superfície com imagem z=4); 

a posição da superfície em relação ao plano perpendicular ao eixo z (está 

completamente debaixo do plano), isto é, o plano horizontal é tangente à superfície. 

Figura 31. Variáveis visuais para z=-x2-y2+4. 

 

Fonte: Própria da autora. 

Articulando esses dois registros, observamos a relação entre o plano 

tangente horizontal e a expressão simbólica 𝑓𝑥(𝑥0, 𝑦0) = 0 e 𝑓𝑦(𝑥0, 𝑦0) = 0. 

Para que o aluno desenvolva a visualização durante a aprendizagem dos 

valores máximos e mínimos locais de funções de duas variáveis, devemos observar 

que o gráfico dessas funções permite a realização de tratamentos específicos. 

Dentro do registro gráfico CAS e das apreensões nesse registro, a mais recorrente 

é a apreensão operatória, por citar as modificações do gráfico, bem como é 
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necessário que o aluno faça a articulação das apreensões perceptiva, sequencial, 

operatória com a apreensão discursiva.  

1.4.3  Teoria das Situações Didáticas 

A teoria das situações didáticas de Brousseau (1998), busca criar um modelo 

de interação entre o aluno, o saber e o milieu no qual a aprendizagem de conceitos 

matemáticos deve ocorrer. Essa teoria, segundo Almouloud (2007), foi 

desenvolvida por Brousseau com a finalidade de caracterizar um processo de 

aprendizagem por uma série de situações reprodutíveis, orientadas 

frequentemente para a modificação de um conjunto de comportamentos dos 

alunos. O objeto central de estudo, nessa teoria, não é o aluno, mas a situação 

didática que relaciona professor, aluno e saber matemático.  

Brousseau (1998) afirma que o aluno aprende adaptando-se a um mileu que 

é fator de contradições, dificuldades e desequilíbrios. De acordo com o autor, tal 

aprendizagem, fruto dessa adaptação, manifesta-se por meio de respostas novas 

que derivam dessa aprendizagem. A concepção moderna do ensino demanda que 

o professor provoque no aluno tais adaptações, por meio de uma escolha judiciosa 

de situações de aprendizagem que lhe são propostas, as quais devem ser aceitas 

pelo aluno, além de levá-lo a agir, falar, refletir e evoluir por si só, uma vez que, o 

aluno aprende por vontade própria aquém a vontade do professor ou da escola. Tal 

situação culmina na ideia de situação adidática proposta por Brousseau (1998) que, 

de acordo com o autor, é o momento em que 

o aluno aceita o problema como seu e o momento em que produz 

sua resposta, o professor recusa-se a intervir como aquele que 

propõe os conhecimentos que pretende fazer surgir. O aluno sabe 

perfeitamente que o problema foi escolhido para levá-lo a adquirir 

um conhecimento novo, mas ele deve saber também que esse 

conhecimento é absolutamente justificado pela lógica interna da 

situação e que pode construí-lo sem fazer apelo a razões didáticas 

(BROUSSEAU, 1998, p. 59, tradução nossa).  

O professor faz a devolução para o aluno de uma situação adidática que 

provoca nele a interação mais independente e mais fecunda possível. A devolução, 

segundo Brousseau (1997), é definida como um ato do professor para fazer com 
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que o aluno aceite a responsabilidade de uma situação de aprendizagem ou de um 

problema, aceitando as consequências dessa transferência.  

Para isso, comunica ou abstém-se de comunicar, de acordo com as 

informações, as questões, os métodos da aprendizagem e as heurísticas. A 

situação ou problema escolhido pelo professor envolve-o em um jogo com o 

sistema de interações do aluno e seu milieu. O milieu é o sistema antagonista do 

sistema ensinado ou previamente ensinado. Esta situação é chamada de didática. 

Brousseau (1997, p. 6) distingue três momentos na situação adidática: ação, 

formulação e validação. 

Situação de ação 

Segundo Brousseau (1997), para que um aluno aja é preciso escolher 

diretamente os estados do milieu antagonista em função de suas próprias 

motivações. Se o milieu reage com certa regularidade, o aluno pode antecipar suas 

respostas e considerá-las em suas futuras decisões. Os conhecimentos permitem 

produzir e mudar essas antecipações, sendo que a aprendizagem é o processo em 

que esses conhecimentos são modificados. 

Segundo Almouloud (2007), depois que o professor transfere para o aluno 

uma parte da responsabilidade pela sua aprendizagem, apresentando-lhe um 

problema cuja melhor solução é o conhecimento a ensinar, o aluno pode agir sobre 

essa situação, esperando retorno de informações. A ação deve permitir ao aluno 

julgar seu resultado e ajustá-lo, se necessário, sem a intervenção do professor, 

graças à retroação do milieu. 

Um exemplo de uma situação de ação, em nosso trabalho, o qual será 

explicitado com detalhe na experimentação, seria quando os alunos leem a 

situação proposta, fazem anotações, realizam a conversão do registro em língua 

natural para o registro algébrico e realizam tratamentos, tanto no registro algébrico 

quanto no gráfico, para encontrar a solução do problema. 

Situação de formulação 

Para Brousseau (1997), a formulação de um conhecimento implícito 

transforma, ao mesmo tempo, suas possibilidades de tratamento, aprendizagem e 
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aquisição. A formulação de um conhecimento corresponderia a uma capacidade do 

aluno de retomá-lo (reconhecê-lo, identificá-lo, decompô-lo e reconstruí-lo em um 

sistema linguístico). Portanto, o milieu, que exigirá do aluno o uso de uma 

formulação, deve envolver (efetivamente ou de maneira fictícia) outro aluno, a quem 

o primeiro deverá comunicar uma informação. 

Segundo Almouloud (2007), o aluno troca informações com um ou vários 

alunos, que serão os emissores e receptores por meio da utilização de uma 

linguagem adequada, escrita ou oral, segundo cada emissor. A linguagem pode ser 

natural ou matemática. É nesse momento que o aluno ou o grupo de alunos explicita 

as ferramentas que utilizou e a solução encontrada. 

Por exemplo, em nossa experimentação, uma situação de formulação seria 

quando a dupla de alunos começa a comunicar-se entre si, formulando que no valor 

máximo a superfície está completamente por baixo do plano perpendicular ao eixo 

z e que o valor máximo da superfície localiza-se no ponto onde o plano 

perpendicular ao eixo z é tangente à superfície. 

Situação de validação 

Brousseau (1997) afirma que os momentos de ação e formulação implicam 

processos de correção empírica ou cultural para assegurar a pertinência, a 

adequação, a adaptação ou a conveniência dos conhecimentos mobilizados. 

Porém, a modelagem, em termos de situação, permite distinguir um novo tipo de 

formulação: o emissor não é um informante, mas um proponente, e o receptor, um 

oponente. Assim, colabora-se no esforço de vincular de forma segura um 

conhecimento a um campo de saberes já consolidados, mas entram em confronto 

quando existem dúvidas. 

Segundo Almouloud (2007), nesse momento o aluno deve mostrar a 

validade de suas afirmações, utilizando uma linguagem matemática apropriada, ao 

julgamento de um interlocutor. O receptor, por sua vez, pode pedir mais explicações 

ou rejeitar as mensagens que não entende ou de que discorda, justificando-a. 

Em nossa experimentação, um exemplo de situação de validação seria 

quando os alunos mobilizam seus conhecimentos sobre a noção plano tangente à 

superfície cuja representação algébrica é dada por: 𝑧 = 𝑧0 + 𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) +
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𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0) e sobre a noção de plano perpendicular ao eixo z cuja 

representação algébrica é expressada por 𝑧 = 𝑧0 , em que 𝑧0 é o valor da função 

no ponto (𝑥0, 𝑦0), isto é 𝑓(𝑥0, 𝑦0) = 𝑧0. A seguir, comparam-se essas duas 

representações dos planos. 

Nesses três momentos da situação adidática são considerados 

essencialmente os processos cognitivos individuais e os desequilíbrios sócio-

cognitivos produzidos nas interações com o milieu que incorpora intenções de 

aprendizagem. 

É fundamental observar que as situações escolhidas pelo professor e 

oferecidas ao aluno deveriam ser contextualizadas, isto é, o conhecimento 

matemático é tratado de forma vinculada a outros conhecimentos, quando o 

conteúdo a ser aprendido se mostra necessário.  

Nesse sentido, Brousseau (1988, p. 14) afirma que o professor assume a 

responsabilidade de recontextualizar e repersonalizar o saber, procurando 

situações que deem sentido ao conhecimento a ser ensinado. Enquanto o 

matemático realiza uma didática prática, que consiste em dar ao saber uma forma 

comunicável, descontextualizada e despersonalizada, fora de um contexto 

temporal. 

O professor tem, pois, de simular na sua aula uma microsociedade 

científica, se quer que os conhecimentos sejam meios econômicos 

para colocar boas questões e resolver debates, se quer que as 

linguagens sejam meios para dominar situações de formulação e 

que as demonstrações sejam provas. Mas, além disto, tem que dar 

também aos seus alunos meios para descobrirem, [...], o saber 

cultural e comunicável que se pretendeu ensinar-lhes. 

(BROUSSEAU, 1998, p. 49, tradução nossa). 

Em seguida, a produção dos alunos, na situação adidática, é retomada pelo 

professor no momento da institucionalização, quando o professor define as 

relações que os comportamentos ou as produções livres do aluno podem ter com 

o saber cultural ou científico. 

Situação de institucionalização 

Brousseau (1988) percebeu que após a validação dos conhecimentos pelos 

alunos, os professores eram obrigados a dar conta da produção, descrever os fatos 
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observados e tudo que estivesse vinculado ao conhecimento, dar um status aos 

eventos da aula, como resultados dos alunos e do processo de ensino, assumir um 

objeto de ensino, identificá-lo, relacionar as produções aos conhecimentos dos 

outros (culturais ou do programa) e indicar o que pode ser reutilizado. 

O professor tinha que constatar o que os alunos deviam fazer (e 

refazer) ou não, tinham aprendido ou deveriam ter aprendido. Esta 

atividade é inevitável: não podemos reduzir o ensino à organização 

de aprendizagens. A consideração “oficial” pelo aluno do objeto do 

conhecimento e pelo professor da aprendizagem do aluno é um 

fenômeno social muito importante e uma fase essencial do 

processo didático: este duplo reconhecimento constitui o objeto da 

INSTITUCIONALIZAÇÃO (Brousseau, 1988, p. 16, tradução 

nossa). 

Segundo Almouloud (2007), as situações de institucionalização são 

definidas como aquelas em que o professor fixa e explicita convencionalmente o 

estatuto cognitivo do saber, retomando e sistematizando tudo aquilo que foi 

realizado. Depois da institucionalização, o saber torna-se oficial e os alunos devem 

incorporá-lo a seus esquemas mentais, disponibilizando seu uso na resolução de 

problemas matemáticos. 

Por exemplo, em nossa experimentação, a institucionalização poderia ser o 

teorema a seguir: 

 

Teorema. Se 𝑓 tiver um valor de máximo ou mínimo local em um ponto (𝑥0, 𝑦0) 

e se as derivadas parciais de primeira ordem existissem nesse ponto, então 

𝑓𝑥(𝑥0, 𝑦0) = 0 e 𝑓𝑦(𝑥0, 𝑦0) = 0 

Assim, o modelo proposto por Brousseau (1998) permite a compreensão das 

interações sociais, que ocorrem na sala de aula entre alunos e professor. e a das 

condições e da forma, por meio das quais o conhecimento matemático pode ser 

apropriado e aprendido. 

1.5  DELIMITAÇÃO DO PROBLEMA 

Nossa revisão bibliográfica nos permite perceber que grande parte dos 

alunos não compreende a representação gráfica de pontos no espaço, no que diz 

respeito à conversão do registro numérico para o gráfico. Na determinação do 
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domínio de funções de duas variáveis reais, há também confusão entre domínio e 

função, em relação à noção de limite, ao caráter geométrico da noção de derivada 

parcial e à noção de área e de volume. Isso nos mostra que a possibilidade de 

utilizar vários registros e de saber efetuar conversões, de um registro para outro, é 

mais complicada no ensino de Cálculo diferencial de duas variáveis reais. 

Em uma das pesquisas analisadas, Alves (2011) estuda a noção de valor 

máximo e mínimo de funções de duas variáveis reais, apresentando ao aluno 

apenas uma atividade, cujo objetivo é identificar visualmente, por meio da intuição, 

a natureza dos pontos marcados, pelo professor, na representação gráfica de uma 

função de duas variáveis reais, que é gerada com apoio do ambiente CAS, Maple. 

O objetivo é verificar, por meio de tratamentos no registro algébrico, se a natureza 

desses pontos que o aluno identificou visualmente seriam aqueles determinados 

no registro algébrico. 

As pesquisas analisadas mostram-nos que um estudo acerca da 

visualização se faz necessário, uma vez que não existem trabalhos em relação ao 

papel da visualização na compreensão das funções de duas variáveis reais, 

particularmente, sobre compreensão dos valores máximos e mínimos dessas 

funções. 

Para o estudo da visualização é indispensável ir além da visão e da 

percepção, é preciso compreender os tratamentos (modificações) no registro 

gráfico e as diferentes apreensões de um gráfico, isto é, uma abordagem de 

interpretação global qualitativa das propriedades do gráfico, porque é apenas com 

este tipo de abordagem que conseguimos a coordenação com o registro algébrico, 

em que os gráficos cartesianos podem funcionar como uma visualização. Neste 

sentido usamos Duval (1999), visto que o estudo da visualização dos registros 

gráficos será feito por meio da Teoria dos Registros de Representação Semiótica. 

Em relação ao software utilizado para representar os gráficos de funções de 

duas variáveis, nas pesquisas utilizou-se o CAS Maple, pois, segundo os 

pesquisadores, é um software que auxiliou na conversão do registro algébrico para 

o registro gráfico, na percepção dos gráficos, permitindo que o gráfico representado 

nesse software desempenhasse seu papel heurístico na resolução das atividades 

propostas em aula. 
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Como estamos interessados no estudo da visualização de gráficos 

representados em softwares, mais do que acudir a um software para auxiliar a 

visualização de gráficos de funções de duas variáveis, é necessário entender como 

se dá o processo de visualização no Cálculo diferencial de duas variáveis. Quanto 

ao software utilizado, escolhemos o CAS Mathematica por permitir a formação, o 

tratamento, a conversão e a visualização de registros gráficos de funções de duas 

variáveis reais. Além de ser um software que está instalado no laboratório de 

computação da Faculdade de Engenharia de Alimentos. 

Pelo exposto anteriormente, formulamos a questão que norteia nosso 

trabalho:  

“Como acontece o processo de visualização durante a 

aprendizagem das noções de valores máximos e mínimos locais de 

funções de duas variáveis reais para alunos de engenharia?”.  

Para responder à questão, pretendemos como objetivo geral: 

Analisar o processo de visualização durante a aprendizagem das noções de 

valores máximos e mínimos locais de funções de duas variáveis reais dos alunos 

de engenharia. 

Para alcançar esse objetivo geral descrevemos os seguintes objetivos 

específicos: 

 Criar situações que envolvam as noções de valores máximos e mínimos 

locais de funções de duas variáveis reais. 

 Analisar as coordenações entre os registros língua natural, algébrico e 

gráfico realizadas pelos alunos. 

 Analisar no gráfico, representado em software Mathematica, as 

apreensões perceptiva, operatória, sequencial e discursiva dos alunos 

ao resolver as situações criadas. 

 Analisar a articulação entre o registro gráfico e/ou gráfico representado 

em software Mathematica com o registro algébrico realizada pelos 

alunos na aprendizagem da noção de valores máximos e mínimos de 

funções de duas variáveis reais. 
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Para alcançar nossos objetivos, pretendemos, também, seguir o modelo de 

Brousseau (1998), já que sua teoria permite-nos compreender as interações sociais 

que ocorrem em sala de aula entre os alunos, o professor e o milieu, além das 

condições e da forma como o conhecimento dos valores máximos e mínimos de 

funções de duas variáveis pode ser apropriado e apreendido. Ademais, a Teoria 

das Situações Didáticas serve de base à metodologia da Engenharia Didática, que 

se preocupa com a construção de uma teoria de controle baseada no sentido das 

situações envolvidas (Artigue, 1988). 

1.6  METODOLOGIA DE PESQUISA 

Segundo Artigue (1988), a Engenharia Didática vista como metodologia de 

pesquisa, caracteriza-se primeiramente por um esquema experimental baseado em 

realizações didáticas na sala de aula, isto é, na concepção, na realização, na 

observação e na análise de sequências de ensino.  

[...] se distinguem, geralmente, dois níveis: o da micro-engenharia 

e o da macro-engenharia, conforme a importância da realização 

didática envolvida na pesquisa. As pesquisas de micro-engenharia 

são as mais fáceis de serem iniciadas, mas permitem levar em 

conta, de forma local, a complexidade do fenômeno sala de aula, 

não permitem compor essa complexidade com a complexidade 

essencial dos fenômenos ligados à duração nas relações 

ensino/aprendizagem. Elas não permitem necessariamente um 

recorte coerente dos objetos de conhecimento. As pesquisas de 

macro-engenharia são, apesar de todas as dificuldades 

metodológicas e institucionais que apresentam, inevitáveis 

(ARTIGUE, 1988, p. 286, tradução nossa). 

Para a autora, essa metodologia caracteriza-se também, em relação a outros 

tipos de pesquisas baseados nas experimentações em sala de aula, pelo registro 

no qual se situa e pelos modos que lhe estão associados. A Engenharia Didática 

situa-se no registro dos estudos de casos, cuja validação é essencialmente interna 

e fundamentada no confronto entre a análise a priori e a análise a posteriori. Assim, 

esta metodologia é singular não pelos objetivos das pesquisas levadas a cabo mas 

pelas características do seu funcionamento metodológico. 
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Nesse processo, Artigue (1988) distingue quatro fases: as análises 

preliminares, a concepção e análise a priori, a experimentação, a análise a 

posteriori e a validação. 

Análise preliminar: apoia-se em um quadro teórico didático geral e em 

conhecimentos didáticos já adquiridos no domínio estudado, mas se apóia também 

em uma análise epistemológica: dos conteúdos visados pelo ensino, do ensino 

habitual e dos seus efeitos, das concepções dos alunos, das dificuldades e 

obstáculos, que marcam a sua evolução, e das limitações em que se situa para 

realização didática efetiva, considerando os objetivos específicos da pesquisa. 

Neste trabalho, apoiamo-nos no quadro do Cálculo. 

Para Artigue (1988, p. 289, tradução nossa), a análise das limitações efetuar-

se-á por meio da distinção de três dimensões: 

[...] a dimensão epistemológica associada às características do 

saber em jogo, a dimensão cognitiva associada às características 

cognitivas do público ao qual se dirige o ensino, a dimensão 

didática associada às características do funcionamento do sistema 

de ensino. 

Concepção e análise a priori: o pesquisador decide agir sobre um 

determinado número de variáveis do sistema não definidas pelas restrições, sobre 

as variáveis de comando, que se supõe serem relativas ao problema estudado. A 

autora distingue dois tipos de variáveis de comando para facilitar a análise de uma 

engenharia:  

As variáveis macro-didáticas ou globais que são relativas à 

organização global da engenharia e as variáveis micro-didáticas ou 

locais, que dizem respeito à organização local da engenharia, isto 

quer dizer, à organização de uma sequência ou de uma fase, tanto 

umas quanto as outras podem ser, por sua vez, variáveis de ordem 

geral ou variáveis dependentes do conteúdo didático cujo ensino é 

visado. Ao nível micro-didático, esta segunda distinção é clássica 

visto que distingue as variáveis do problema das variáveis de 

situação associadas à organização e à gestão do milieu [...] as 

variáveis didáticas são aquelas cuja prova do efeito didático foi 

atestada (ARTIGUE, 1988, p. 291, tradução nossa, grifo nosso). 

Portanto, para Artigue (1988), o objetivo da análise a priori é determinar de 

que maneira as escolhas efetuadas, isto é, as variáveis que assumimos como 

pertinentes, permitem controlar os comportamentos dos alunos e o sentido desses 
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comportamentos. Esta análise que tem uma parte descritiva e uma parte preditiva 

centra-se nas características de uma situação adidática, que se pretendeu constituir 

e que será devolvida aos alunos. Na análise a priori devem ser considerados os 

seguintes pontos: 

 Descrever as escolhas das variáveis locais e as características da 

situação adidática desenvolvida; 

 Analisar o que poderia estar em jogo nessa situação para o aluno em 

função das possibilidades de ação, seleção, controle e validação de que 

dispõe durante a experimentação; 

 Prever os comportamentos possíveis dos alunos e procurar mostrar de 

que forma a análise efetuada permite controlar o sentido desses 

comportamentos e assumir, particularmente, que os comportamentos 

esperados, se intervierem, sejam resultado da aplicação do conhecimento 

visado pela aprendizagem. 

Experimentação: para a autora esta fase é a clássica. Segundo Almouloud 

e Ferreira (2012, p. 27), esta fase consiste “na aplicação da sequência didática, 

tendo como pressupostos apresentar os objetivos e condições da realização da 

pesquisa, estabelecer o contrato didático e registrar as observações feitas durante 

a experimentação”. 

Para Artigue (1988), os dados recolhidos durante a experimentação são, às 

vezes, completados por dados obtidos pela utilização de metodologia externas: 

questionários, entrevistas individuais ou em pequenos grupos, realizadas em 

diversos momentos do ensino. 

Análise a posteriori e validação: a análise a posteriori apoia-se no conjunto 

dos dados recolhidos ao longo da experimentação. “[...], é no confronto das duas 

análises, a priori e a posteriori, que se funda essencialmente a validação das 

hipóteses envolvidas na pesquisa” (ARTIGUE, 1988, p. 297, tradução nossa). O 

objetivo é construir conclusões em função das associações apropriadas entre os 

objetivos delineados a priori, relacionando-os às observações, com a intenção de 

avaliar a reprodutibilidade e a regularidade dos eventos observados. 
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Assim, a engenharia didática apresenta-se como importante metodologia de 

pesquisa, por interligar o aspecto científico com a prática didática. Além da 

pesquisa, essa metodologia constitui um referencial metodológico interessante e 

viável para o processo de ensino e aprendizagem, pois permite a compreensão dos 

efeitos causados pelas práticas docentes desenvolvidas em sala de aula. 
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Capítulo 2 - ANÁLISES PRELIMINARES DA ENGENHARIA 

DIDÁTICA 

 

Neste capítulo, a primeira fase da Engenharia, estudaremos a viabilidade de 

uma abordagem epistemológica associada às características do saber em jogo. 

Para isso, apresentaremos um olhar para a história do Cálculo de várias variáveis 

reais para saber como foi construído o conhecimento dos valores máximos e 

mínimos de funções de duas variáveis reais. Estudaremos a abordagem cognitiva 

associada às características cognitivas do aluno, através da análise dos livros 

didáticos de Cálculo Diferencial de funções de duas variáveis, realizando uma 

abordagem didática associada às características do funcionamento de ensino. 

2.1 UM OLHAR PARA A HISTÓRIA DO CÁLCULO EM VÁRIAS 

VARIÁVEIS 

Os séculos XVII e XVIII foram abundantes em resultados matemáticos de 

diferentes naturezas. “Os matemáticos do século XVIII desenvolveram o poder do 

cálculo sem introduzir substancialmente conceitos originais, mas exercitando 

habilidade na técnica” (CORONA e ARELLANO, 2007, p. 91, tradução nossa). Para 

os autores, o trabalho matemático do século XVIII foi diretamente inspirado por 

problemas de física. 

Pode-se dizer que o interesse do trabalho não foi a matemática, 

mas a solução de problemas em Física, as matemáticas foram um 

meio para o objetivo da física, concentrando-se na mecânica de 

sistemas discretos e de meios contínuos (CORONA e ARELLANO, 

2007, p. 92, tradução nossa). 
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Os autores também afirmam que, nessa época, não havia uma clara 

separação entre ciência e o que hoje chamamos de engenharia, sendo que os 

matemáticos eram os responsáveis pelos problemas tecnológicos no cotidiano. É o 

caso de Euler, que trabalhou no desenho de navios, cartografia, entre outros 

problemas matemáticos. Qualquer questão de análise, tal como a convergência 

uniforme das séries e integrais, o intercâmbio da ordem da integração, o uso das 

diferenciais de ordem superior, os aspectos da existência das integrais e a solução 

das equações diferenciais, foram totalmente ignoradas. O modo de proceder dos 

matemáticos era justificável, pois as regras de operação eram claras. “Uma vez 

formulado matematicamente o problema físico, o virtuosismo entra em ação e 

novas metodologias e conclusões emergem” (CORONA e ARELLANO, 2007, p. 

92). 

As autoras ainda sustentam que o significado das matemáticas guiava a 

trajetória a seguir e frequentemente forneciam argumentos parciais para cobrir as 

etapas não matemáticas. Finalmente, as conclusões físicas corretas davam a 

garantia de que a matemática estava certa. 

Rosa (2010) afirma que, em razão da estreita vinculação da Matemática com 

a Física e a Astronomia, matemáticos como os Bernoulli, Euler, Clairaut, 

D’Alembert, Monge, Lagrange, Laplace e Legendre, entre outros, contribuíram, 

igualmente, para o desenvolvimento desses ramos da Ciência. Não há dúvida que, 

“apesar de ter sido importante a herança recebida do século XVII, trabalhos 

pioneiros, pesquisas inovadoras e criações imaginativas, demonstram a valiosa e 

adicional contribuição do “Século das Luzes” à evolução da Matemática” (ROSA, 

2012, p. 249).  

Ao examinar a Matemática no século XVIII, o autor sustenta também que 

dois países sobressaíram-se nessa evolução: a Suíça, com o clã Bernoulli e Euler, 

e a França, com Lagrange, Legendre, Monge, Laplace, entre outros. Esses 

matemáticos, chamados, segundo Rosa (2010), “matemáticos da Revolução”, 

fariam as principais contribuições, em particular na Análise (Cálculo) e na 

Geometria. Outros importantes centros como a Itália, a Inglaterra, a Escócia, a 

Holanda e a Alemanha também colaboraram para o desenvolvimento da 

Matemática, mas, para o autor, sem o extraordinário brilho de épocas passadas. 
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Segundo o autor, Lagrange (1736-1813), ao estudar os teoremas de Fermat, 

descobriu, no ano de 1766, o princípio de uma solução completa para equação de 

segundo grau com duas variáveis. Sua principal obra foi, entre outras, a Teoria das 

Funções Analíticas, em 1797, em que desenvolveu os princípios do Cálculo 

infinitesimal,  

[...] substituindo as considerações dos infinitamente pequenos e 

dos “evanescentes”, em que se apoiava Leibniz, e as de limites e 

fluxões, empregadas por Newton, pelas considerações 

características do seu método: as derivadas. Embora este método 

algébrico de fundamentar o Cálculo não fosse totalmente 

satisfatório, o tratamento abstrato das funções foi um considerável 

passo à frente, surgindo a primeira “teoria de funções de uma 

variável real”, com aplicações a uma grande variedade de 

problemas na Álgebra e na Geometria. (ROSA, 2012, p. 265). 

Em relação ao estudo dos valores máximos e mínimos locais de uma função 

em várias variáveis, Lagrange (1759) apresenta-o por meio da noção de diferencial 

de primeira e segunda ordem, com respeito às variáveis 𝑡1, 𝑡2, … , 𝑡𝑛, da função em 

ℝ𝑛 e representada por 𝑍 = 𝑓(𝑡1, 𝑡2, … , 𝑡𝑛). O autor encontra a função diferencial de 

primeira ordem concernente a todas as variáveis, como mostra a Figura 32. 

Figura 32. Função diferencial de primeira ordem de Z. 

 

Fonte: Lagrange3, 1759, p. 1. 

Podemos observar que o autor, na definição da diferencial, não usa a noção 

de derivada parcial, mas representa com , , , ,...p q r s  a função derivada parcial de 

primeira ordem com respeito às variáveis , , , ,...t u x y , respectivamente. Isto é, 
𝜕𝑍

𝜕𝑡
=

𝑝, 
𝜕𝑍

𝜕𝑢
= 𝑞, 

𝜕𝑍

𝜕𝑥
= 𝑟, 

𝜕𝑍

𝜕𝑦
= 𝑠, então a diferencial de primeira ordem de Z estaria 

representada por 𝜕𝑍 =
𝜕𝑍

𝜕𝑡
𝑑𝑡 +

𝜕𝑍

𝜕𝑢
𝑑𝑢 +

𝜕𝑍

𝜕𝑥
𝑑𝑥 +

𝜕𝑍

𝜕𝑦
𝑑𝑦 + ⋯. 

____________ 

3 Isso nos faz compreender que Z representa uma função algébrica, de variáveis t,u,x,y..., a qual  propomos 

transformar em um máximo e em um mínimo, segundo as regras ordinárias: 𝑑𝑍 = 𝑝𝑑𝑡 + 𝑞𝑑𝑢 + 𝑟𝑑𝑥 + 𝑠𝑑𝑦 + ⋯ 
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A fim de estudar as condições necessárias para a ocorrência de um valor 

máximo ou mínimo da função, Lagrange (1759) estabelece as circunstâncias para 

que haja um valor extremo. Para tanto, os pontos críticos têm muita importância. A 

diferencial da função deve tender para zero, independentemente dos valores 

atribuídos às diferenciais dt , du , dx , ,...dy  das variáveis , , , ,...t u x y . Inversamente, se 

a equação acima for verificada por valores arbitrários de dt , du , dx , ,...dy  segue-se 

que ... 0p q r    , como se pode observar na Figura 33. 

Figura 33. Encontrando os pontos críticos de Z. 

 

Fonte: Lagrange4, 1759, p. 4. 

Da mesma forma, usando apenas a definição de diferencial de uma função 

de várias variáveis reais, Lagrange (1759) encontra a diferencial de segunda ordem 

da função representada por 𝑍, como mostra a Figura 34. Vemos na sequência que 

não são mostrados todos os tratamentos algébricos realizados.  

 

 

 

 

____________ 

4 Porém, como a relação entre t, u, x... é ainda indeterminada, bem como os seus diferenciais  dt, du, dx,..., e 

que ainda a equação dada deve ser verdadeira não importando a relação entre elas, é evidente que para 
procurar a equação, é necessário igualar, separadamente, a zero, cada membro pdt, qdu, rdx,..., o que leva 

tantas equações particulares quanto variáveis, a saber: 𝑝 = 0,   𝑞 = 0, 𝑟 = 0,… Por meio de todas essas 
equações encontraremos os valores de cada variável desconhecida t, u, x,.., que substituindo na função Z, 
achamos um máximo ou um mínimo. 
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Figura 34. Encontrando a diferencial de segunda ordem de Z. 

 

Fonte: Lagrange5, 1759, p. 4. 

Se a função representada por 𝑍 depender de duas variáveis 𝑡 e 𝑢, a 

diferencial de segunda ordem 2d Z  seria representada pela expressão 

2 22Adt Bdtdu Cdu  , conforme mostra a Figura 35, em que, se usássemos as 

derivadas parciais de segunda ordem, teríamos: 𝐴 =
𝜕2𝑓

𝜕𝑡2, 𝐵 =
𝜕2𝑓

𝜕𝑡𝜕𝑢
, 𝐶 =

𝜕2𝑓

𝜕𝑢2. 

Figura 35. Comportamento da diferencial de segunda ordem. 

 

Fonte: Lagrange6, 1759, p. 6. 

Para estudar o problema dos valores extremos, devemos investigar essa 

expressão quadrática, homogênea em 𝑡 e 𝑢. Segundo Courant (1966), a forma 

quadrática representada por 2 22Adt Bdtdu Cdu   será definida, se e somente se 

____________ 

5 Passemos agora ao exame da segunda diferencial. Supondo que seja permitido, e são os primeiros 

diferenciais dt, dx, du... constantes, teremos [...]. Seja [...]. Então [...] 

6 [...] essa forma 𝐴 (𝑑𝑡 +
𝐵𝑑𝑢

𝐴
)
2
+ (𝐶 −

𝐵2

𝐴
) 𝑑𝑢2; e veremos que, como os quadrados (𝑑𝑡 +

𝐵𝑑𝑢

𝐴
)
2
 e 𝑑𝑢2 sempre 

têm o mesmo sinal +, toda a quantidade será necessariamente positiva, os dois coeficientes A e (𝐶 −
𝐵2

𝐴
) são 

positivos, ou ao contrário será negativa quando são ambos negativos, independentemente da relação de dt 
e du. Teremos os mesmos resultados também para o caso do mínimo. 
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a condição 2 0AC B   for satisfeita. Será, então, positivamente definida, se 0A   

de outro modo, será negativamente definida.  

Para que a forma quadrática possa ser indefinida, é necessário e suficiente 

que 2 0AC B  . Se 2 0AC B  , nenhuma conclusão poder ser tirada. O autor 

acrescenta ainda que, se a forma quadrática 2 22Adt Bdtdu Cdu   é 

positivamente definida, a função admite um mínimo, conforme mostra a Figura 35. 

Se a forma for negativamente definida, a função admite um máximo, como na 

Figura 36. Contrastando a teoria das formas quadráticas com a teoria apresentada 

por Lagrange (1759), observamos que há concordância. 

Figura 36. A forma quadrática é definida negativa, Z tem valor máximo. 

 

Fonte: Lagrange7, 1759, p. 6. 

O autor afirma que esse mesmo procedimento pode ser usado para funções 

de três ou mais variáveis. Lagrange (1759) finaliza essa obra apresentando um 

exemplo de corpos elásticos para que essa teoria seja muito mais clara. Assim, 

demonstrou-se o seguinte resultado para funções de duas variáveis: 

 

 

 

____________ 

7 Z não poderá ser um mínimo. Em segundo lugar encontraremos para o máximo 𝐴 < 0, 𝐶 −
𝐵2

𝐴
< 0. A saber, 

𝐶 <
𝐵2

𝐴
, 𝐶𝐴 > 𝐵2, então, A é negativo, o que dará ainda: 𝐶 < 0; também as condições para o máximo serão 

em parte as mesmas e em parte precisamente contrariam aquelas do mínimo. 
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Figura 37. Teste da segunda derivada. 

 

Fonte: Hairer e Wanner8, 2008, p. 325. 

O interessante nessa obra é que Lagrange (1759) generaliza os critérios das 

derivadas parciais de ordem superior para encontrar máximos e mínimos de uma 

função em várias variáveis. 

Pouco depois, em 1795, segundo Rosa (2012), o geômetra Monge (1746-

1818) publicou seu estudo de Cálculo aplicado em curvas e superfícies no espaço. 

Utilizou o Cálculo para definir a curvatura da superfície e determinou a equação 

diferencial da curvatura. “Além do estudo da sombra, perspectiva e topografia, deu 

Monge especial atenção à sua Teoria das famílias de superfícies e às propriedades 

da superfície, incluindo retas normais e planos tangentes, que, segundo Lagrange, 

bastaria para imortalizá-lo” (Ibid, p. 267). 

O estudo sobre as propriedades das curvas e das superfícies, por meio do 

cálculo, desenvolver-se-ia de forma sistemática, no século XIX, caracterizando-se, 

segundo Rosa (2010), pelo extraordinário desenvolvimento da Matemática pura e 

aplicada, pela formulação de conceitos como: grandeza, quantidade, ordem, forma, 

____________ 

8 Teorema (Lagrange 1759). Seja 𝑓:ℝ2 → ℝ  uma função que possui todas as derivadas parciais de ordem 

dois, as quais são funções contínuas e 4.24 (seja (𝑥0, 𝑦0) um ponto crítico da função). a) o ponto (𝑥0, 𝑦0) é 

mínimo local, si, em (𝑥0, 𝑦0), 
𝜕2𝑓

𝜕𝑥2 > 0 e 
𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2 − (
𝜕2𝑓

𝜕𝑥𝜕𝑦
)
2

> 0, b) o ponto (𝑥0, 𝑦0) máximo local, si, em (𝑥0, 𝑦0), 

𝜕2𝑓

𝜕𝑥2 < 0 e 
𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2 − (
𝜕2𝑓

𝜕𝑥𝜕𝑦
)
2

> 0, c) No caso em que 
𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2 − (
𝜕2𝑓

𝜕𝑥𝜕𝑦
)
2

< 0 em (𝑥0, 𝑦0), então esse ponto é o de 

sela. 
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extensão, posição, e pela aplicação do método dedutivo ao pensamento abstrato e 

lógico. 

Pela produtividade em qualidade e quantidade, pela introdução de 

novos conceitos, pela aplicação de maior rigor metodológico, [...] e 

pelos significativos avanços nos diversos ramos (Álgebra, 

Geometria, Análise), [...]. O que caracterizaria a Matemática do 

século XIX, contudo, seria a ênfase na abstração, o retorno ao 

rigor da fundamentação, a criação da Geometria não-euclidiana e 

a fundação da Lógica matemática (ROSA, 2010, p. 39, grifo nosso). 

Para o autor, o principal introdutor do rigor no Cálculo infinitesimal foi Cauchy 

(1789-1857), em cuja obra Lições sobre o Cálculo Diferencial (1829) apresentou a 

definição de limite, que passaria a ser a base do Cálculo infinitesimal:  

[...] esclareceu as noções de convergência de uma série, da 

continuidade de uma função e da integral de uma função e definiu 

o “infinitamente pequeno”: uma quantidade variável se transforma 

em infinitamente pequena quando seu valor numérico decresce 

infinitamente, de maneira a convergir ao limite zero. (ROSA, 2010, 

p. 41) 

Em relação ao campo da Álgebra, o autor acrescenta ainda que haveria um 

grande desenvolvimento graças aos estudos dos determinantes e das matrizes, 

das formas algébricas e invariantes. Já nesse século, a Álgebra estender-se-ia, de 

forma progressiva, para Equações diferenciais e derivadas parciais, uma vez que 

antes se encontrava confinada ao estudo das Equações algébricas de primeiro 

grau. Em relação às noções de Determinantes e Matrizes, Rosa (2010) menciona 

o estudo de Carl Jacobi (1804-1851) sobre o determinante funcional, chamado de 

“jacobiano”. Em relação à Teoria das Formas e à Teoria dos Invariantes, afirma que 

na primeira metade do século, em função dos avanços em Geometria analítica, 

desenvolveu-se o estudo das formas algébricas, ou funções homogêneas de muitas 

variáveis independentes.  

A noção de invariante estava subjacente em diversos trabalhos de 

Lagrange, Gauss, Cauchy e Jacobi, mas o conceito foi explicitado 

em 1841, por George Boole, seguido por uma série de estudos, a 

partir de 1845, de Cayley e Sylvester, sobre as teorias das formas 

algébricas [...] e dos invariantes (ROSA, 2010, p. 59). 

Segundo o autor, a frutífera e estreita colaboração de Cayley (1821-1891) e 

Sylvester (1814-1897), em diversos temas da Álgebra, seria responsável pelo 
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grande impulso da Álgebra linear, inclusive no desenvolvimento das teorias dos 

determinantes, das matrizes, dos invariantes e das formas. Para Rosa (2010), 

essas teorias seriam estudadas e aperfeiçoadas nos trabalhos, entre outros, de 

Ludwig Otto Hesse (1811-1874), que empregava regularmente coordenadas 

homogêneas e determinantes.  

Segundo Cajori (2007), as primeiras pesquisas de Hesse foram sobre as 

transformações lineares das superfícies de segunda ordem e sobre o estudo 

analítico de curvas de terceira ordem. E, para Colette (1993), um tratado a respeito 

dos pontos de inflexão das curvas cúbicas foi desenvolvido por Hesse. No âmbito 

desse tratado surge o determinante funcional, chamado Hessiano, a partir da matriz 

das segundas derivadas parciais de uma função homogênea 𝑓(𝑥1, 𝑥2, 𝑥3) no ponto 

representado por 𝑥 de coordenadas (𝑥1, 𝑥2, 𝑥3), expresso por (𝐻𝑓)(𝑥) =

∑
𝜕2𝑓(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗

3
𝑖,𝑗=1 𝑑𝑥𝑖𝑑𝑥𝑗, sendo a matriz Hessiana da função no ponto 𝑥 representada por 

[ℎ𝑖𝑗] = [
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥)]. 

Assim, observamos que a construção dos valores máximos e mínimos locais 

de funções de duas ou mais variáveis, particularmente, a construção da matriz 

Hessiana, que permite obter critérios de classificação dos pontos críticos por meio 

da segunda derivada, está centrada no registro em língua natural e registro 

algébrico, sobressaindo o tratamento no registro algébrico. Porém, não existe, no 

ensino e apreendizagem uma articulação entre esses registros, nem a atividade de 

conversão entre registros de representação semiótica, nem a variedade de 

representações semióticas, que são condições necessárias para a compreensão 

dos valores máximos e mínimos de funções de duas variáveis. 

Essas limitações não favorecem o desenvolvimento da visualização na 

compreensão desses valores, visto que a visualização requer a leitura dos gráficos 

cartesianos, que depende da articulação entre o registro gráfico e o algébrico. Para 

o estudo da visualização é necessário compreender os tratamentos no registro 

gráfico e os diferentes tipos de apreensões de um gráfico. 

Em relação à formação da representação da matriz Hessiana, vale ressaltar 

que, do ponto de vista de recursos cognitivos despendidos, esta formação requer 
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mais do aluno, pois, no terceiro semestre do curso de engenharia, alguns 

resultados de Álgebra linear, tais como formas quadráticas, a teoria de matrizes e 

a teoria dos determinantes, não fazem parte de seus conhecimentos prévios, nem 

está na ementa da disciplina.  

Dessa forma, afirmamos o mesmo em relação à representação do Hessiano 

(𝐻𝑓)(𝑥) = ∑
𝜕2𝑓(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗

3
𝑖,𝑗=1 𝑑𝑥𝑖𝑑𝑥𝑗 , pois representa uma forma quadrática, por exemplo, 

o diferencial de segunda ordem, a respeito das variáveis independentes 𝑥1, 𝑥2, 𝑥3, 

sendo que para formar essa representação precisamos mobilizar conhecimentos de 

sequência de funções, os quais o aluno de terceiro semestre de engenharia ainda 

não possui. 

2.2 O OBJETO MATEMÁTICO EM LIVROS DIDÁTICOS 

Para Duval (1995), a pergunta sobre a compreensão dos livros tomou uma 

nova forma com o surgimento da educação massiva. A prolongação da 

escolaridade e a diversificação dos conhecimentos, que se devem adquirir, 

evidenciaram que, embora os alunos aprendam a ler durante o primário, não se 

garante a compreensão dos múltiplos e variados livros que lhes são propostos 

posteriormente.  

Segundo o autor, essa indagação remete-se a um problema cognitivo, 

relacionados aos processos de elaboração de uma compreensão durante a leitura, 

durante os primeiros recorridos visuais que faz o leitor. No entanto,  

Estes processos não são apenas complexos, mas parecem não 

funcionar da mesma maneira para todos os livros. Em particular, 

quando a organização redacional de um livro se afasta muito das 

formas de organização próprias dos discursos orais espontâneos y 

[...], muito rapidamente as dificuldades de compreensão podem 

chegar a ser insuperáveis para muitos alunos [...] (DUVAL, 1995, p. 

324, tradução nossa). 

Conforme o autor, os modelos de compreensão estão essencialmente 

concentrados no leitor, em seus conhecimentos, esquecendo todos os fatores 

relativos às características e às variáveis redacionais dos livros: os graus e os 

modos de explicação do conteúdo cognitivo do livro, “as distâncias mais ou menos 
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importantes entre a organização redacional do livro e a organização discursiva de 

uma elocução oral espontânea” (DUVAL, 1995, p. 324, tradução nosssa). 

Para Duval (1995), se a compreensão dos livros é o resultado da interação 

entre um leitor e um livro, essas variáveis redacionais do livro são tão importantes 

como as variáveis relativas ao leitor: a base de conhecimentos de que dispõe em 

relação ao conteúdo cognitivo do livro, a compreensão do vocabulário e sua 

competência para a descodificação sintática. Somente em nível de interação entre 

estes dois tipos de variáveis é que “realmente se pode realizar uma análise dos 

processos de compreensão do livro. Os diferentes tipos de interação entre um leitor 

e um livro, determinam, por sua vez, situações de leitura diferentes” (Ibid, p, 325). 

Em relação aos livros didáticos de Matemática, quando Lacroix (1816) 

observava as obras didáticas de sua época, manifestava sua preocupação sobre o 

excessivo emprego de definições matemáticas e simbologias, questionando a 

metodologia empregada nos livros didáticos e o próprio modo de organização e 

estruturação do saber matemático.  

Um livro didático deve evitar ser muito detalhado, pois prefere-se lutar contra 

as dificuldades de um livro um pouco conciso do que seguir passo a passo os 

detalhes supérfluos que obstam seu avanço e fazem perder de vista o objetivo 

principal. 

[…] o leitor e o autor do livro devem ajudar-se mutuamente. Há em 

cada ciência coisas que não se podem ensinar, e que o aluno deve 

adquirir por si mesmo, isto é, o habitual dos procedimentos da 

ciência, ou de outro modo o mecanismo das operações que ela 

prescreve: em aritmética e em álgebra são os cálculos, em 

geometria são as construções. (LACROIX, 1816, p. 207, tradução 

nossa) 

Em relação à quantidade de procedimentos nessas áreas da Matemática, 

Lacroix (1816) orientava no sentido de que a memória seria ainda necessária para 

a condução das descobertas. Para o autor, existem duas funções na memória: uma 

de recordar as coisas em conjunto e uma de reproduzir todos os seus detalhes, 

sendo que é a primeira que se deveria exigir daqueles que cultivam as ciências 

exatas. A memória proporciona, quando necessário, o auxílio que não se pensaria 

buscar nos livros, entretanto, ela apenas se cultiva pelo uso frequente que se faz 
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das coisas que lhe foram confiadas, e não por um trabalho forçado de repetições 

contínuas. 

Em relação aos objetos mais complicados que os cálculos numéricos, 

Lacroix (1816) diz que não existe inconveniente em usar os livros didáticos, e 

enfatiza a não necessidade de carregar a memória de demonstrações e de 

fórmulas:  

O que é necessário possuir é a marcha dos métodos, o valor de 

seus termos técnicos, a inteligência dos idiotismos na linguagem, 

ou a faculdade de extrair o sentido das frases e as formas de 

expressão particulares dos principais escritores que tratam a 

ciência, a fim de poder a uma simples leitura, compreender suas 

obras. (LACROIX, 1816, p. 189, tradução nossa) 

Enfim, é preciso conhecer a natureza e o encadeamento dos objetos que os 

livros contêm a fim de poder consultá-los. Como afirma Alves (2011, p. 22, grifo 

nosso), “a única maneira de o professor cultivar a Matemática, nos seus alunos, é 

o uso frequente dos livros, sem que se caracterize um trabalho forçado e de 

repetições contínuas, como vemos hoje em dia, as repetições e mecanizações de 

rotinas matemáticas sem sentido”.  

Alves também observa que a linguagem característica de cada área da 

Matemática pode ser mais ou menos favorável a uma compreensão rápida do leitor, 

e ainda o uso inapropriado da linguagem algébrica, tradicionalmente explorada 

pelos autores de livros, depara com o surgimento de sentimentos negativos e 

repulsão ao conhecimento matemático. Como o autor sustenta: “vale recordar que 

a mediação impregnada pelo espírito formalista não assume como prioritário o ato 

de promover de modo frutífero a produção e a diversificação do repertório de 

representações mentais do estudante” (ALVES, 2011, p. 23). 

Assim, analisaremos, na sequência, os livros didáticos usuais adotados no 

ensino dos valores máximos e mínimos de funções de duas variáveis reais na 

faculdade de Engenharia da Universidade Nacional do Callao, a fim de verificar se 

esses autores proporcionam ao aluno situações que dão sentido aos 

conhecimentos que devem ser ensinados, ricos em registros, de forma a lhe 

propiciar a possibilidade de realização de tratamentos, conversões e a coordenação 

entre esses registros, verificando se permitem que o gráfico cumpra seu papel 
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heurístico, se permitem a realização de tratamentos no gráfico e se ocoreem as 

apreensões no registro gráfico. 

Os livros didáticos a analisar são: RUIZ (1995), MARSDEN E TROMBA 

(1998) e FINNEY (1999). Em relação aos livros de Ruiz (1995) e Marsden e Tromba 

(1998), os autores efetuam demonstrações dos teoremas relacionados às primeiras 

e às segundas derivadas parciais.  

Ruiz (1995) inicia a seção com a definição formal dos valores máximo e 

mínimo, usando um registro gráfico no espaço, mas também um gráfico no plano 

para mostrar como é o comportamento das curvas de nível perto do valor mínimo, 

a fim de ter uma apreensão perceptiva do valor mínimo, como mostra a Figura 38. 

Assim, evidenciamos a realização de um tratamento no registro gráfico.  

Figura 38. Representação gráfica do mínimo local de f(x,y). 

 

Fonte: Ruiz, 1995, p. 335. 

No que diz respeito aos exercícios resolvidos, como mostra a Figura 39, 

observamos que o autor utiliza os registros de língua natural, algébrico e gráfico. 

Realiza a conversão do registro algébrico para o registro gráfico de uma função de 

duas variáveis. De maneira semelhante, o autor realiza um tratamento no registro 

gráfico, representando graficamente as curvas de nível de uma função de duas 

variáveis. Pela apreensão perceptiva, observamos o comportamento das curvas de 

nível perto do valor máximo, mas esse gráfico apenas ilustra o valor máximo, 

permitindo uma representação icônica desse valor. Logo, não se utiliza a apreensão 
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operatória porque nenhuma modificação é feita no gráfico para compreender o valor 

máximo. 

Figura 39. Representação gráfica de um máximo local de f(x,y). 

 

Fonte: Ruiz, 1995, p. 336. 

Os exercícios propostos, por exemplo, como mostra a Figura 40, tem a 

característica de ser resolvidos, ao aplicar diretamente os teoremas da derivada de 

primeira ordem e o teste da segunda derivada, promovendo o tratamento no 

registro algébrico. 

Figura 40. Exercícios propostos de máximos e mínimos locais. 

 

Fonte: Ruiz, 1995, p. 363. 

Conforme mostra a Figura 41, Marsden e Tromba (1998) começam a seção 

com a definição formal dos valores máximo, mínimo e ponto de sela, explorando as 

noções de máximos e mínimos envolvidas nos registros gráficos no espaço, isto é, 

realizam a operação de conversão do registro algébrico para o gráfico, apenas para 
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ilustrar a noção de valor mínimo local e máximo local, respectivamente, permitindo 

ter uma apreensão perceptiva desses valores. A representação dos valores mínimo 

e máximo é icônica. 

Figura 41. Conversão para o registro gráfico do mínimo e máximo local. 

 

Fonte: Marsden eTromba, 1998, p. 249. 

Na seção de exercícios resolvidos, os autores utilizam a língua natural e os 

registros algébricos, conforme mostra a Figura 42. Observamos que o exercício 

resolvido tem a característica de ser uma aplicação direta do teorema, promovendo 

o tratamento no registro algébrico para encontrar o valor mínimo local. 

Figura 42. Registro em língua natural e algébrico. 

 

Fonte: Marsden e Tromba, 1998, p. 257. 
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Ressaltamos que na seção de exercícios propostos, como mostra a Figura 

43, esses autores têm um diferencial na maneira de apresentar um exercício 

vinculado a outros conhecimentos, por exemplo, à área da Geometria. 

Figura 43. Exemplo de exercício vinculado à Geometria. 

 

Fonte: Marsden e Tromba, 1998, p. 264. 

Assim, Ruiz e Marsden e Tromba, a fim de estudar os valores máximos e 

mínimos locais de funções de duas variáveis reais, não exploram frequentemente 

os registros gráficos. Ressaltamos novamente que a conversão do registro 

algébrico para o registro gráfico é feita apenas para ilustrar esses valores e para 

que o aluno tenha uma representação icônica dos valores máximo, mínimo e ponto 

de sela, de modo que os autores não propiciam a coordenação entre esses 

registros. As operações de tratamento no registro gráfico não são exploradas, nem 

se utiliza a apreensão operatória, porque nenhuma modificação é feita no gráfico 

para compreender os valores máximos e mínimos. Além disso, não se analisam 

situações cujas questões levam o aluno a desenvolver o processo de visualização 

na compreensão desses valores. 

Já Finney (1999) apresenta um registro gráfico no espaço, mas é apenas 

usado como uma ilustração para identificar um ponto de sela. O autor mostra a 

representação algébrica de uma função de duas variáveis reais e de seu gráfico, 

representado no software Mathematica, como é mostrado na Figura 44, 

proporcionando a conversão do registro algébrico para o gráfico. Ressaltamos que 

a função representada no Mathematica é apenas para ilustrar o gráfico no sistema 

cartesiano ℝ3, permitindo a apreensão perceptiva do gráfico. 
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Figura 44. Registro gráfico CAS do ponto de sela. 

 

Fonte: Thomas e Finney, 1999, p. 971. 

Na seção de exercícios resolvidos, como mostra na Figura 45, notamos que 

a característica desse exercício é a aplicação direta do teorema das primeiras e 

segundas derivadas parciais. Percebemos que o autor realiza a conversão do 

registro algébrico para o gráfico, permitindo a apreensão perceptiva do ponto de 

sela. O gráfico é representado no software Mathematica, mas não é mostrado o 

comando do software que permite a conversão para o registro algébrico. O autor 

promove a conversão do registro algébrico para o registro gráfico CAS e os 

tratamentos no registro algébrico para encontrar a solução do exercício. O registro 

gráfico CAS somente é utilizado para ilustrar um ponto de sela e permitir uma 

apreensão perceptiva desse ponto. 

Figura 45. Ilustração do ponto de sela e tratamento algébrico. 

 

Fonte: Finney, 1999, p. 973. 
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De acordo com a Figura 46, podemos dizer que o autor aborda o teorema da 

segunda derivada parcial para o estudo de valores máximos e mínimos locais 

empregados apenas em língua formal, mas não efetua as demonstrações. 

Figura 46. Teorema apresentado apenas o registro de língua formal. 

 

Fonte: Finney, 1999, p. 972. 

Ressaltamos que na seção de exercícios propostos, como mostra a Figura 

43, é apresentado um diferencial para permitir a apreensão discursiva dos gráficos 

CAS. 

Figura 47. Exemplo de apreensão discursiva. 

 

Fonte: Finney, 1999, p. 972. 

Os exercícios propostos, conforme mostra a Figura 40, serian resolvidos ao 

se aplicarem diretamente os teoremas da derivada de primeira ordem e o teste da 

segunda derivada, promovendo o tratamento no registro algébrico. 
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Figura 48. Exemplo de exercícios propostos. 

 

Fonte: Finney, 1999, p. 975. 

Assim, afirmamos que Finney (1999) propicia a coordenação entre os 

registros de representação semiótica utilizados. O autor não permite que o registro 

gráfico CAS cumpra seu papel heurístico porque as operações de tratamento nesse 

registro não são exploradas, nem se utiliza a apreensão operatória, porque 

nenhuma modificação é feita no gráfico para compreender os valores máximo e 

mínimo. Além disso, o autor não explora situações que levam o aluno a desenvolver 

o processo de visualização. 

Nesse sentido, afirmamos que a construção de um conjunto de situações, 

envolvendo o estudo de valores máximos e mínimos locais de funções de duas 

variáveis reais, não está sendo desenvolvida nos livros didáticos. A coordenação 

de registros de representação semiótica, as modificações no registro gráfico e/ou 

registro gráfico CAS e a articulação entre este registro e o registro algébrico 

essenciais no processo de visualização (Duval, 1999) também não são 

consideradas pelos livros didáticos como fundamental para que o aluno 

compreenda e construa seus conhecimentos matemáticos. 

2.3  ESTUDO DIDÁTICO DO OBJETO MATEMÁTICO 

Nesta parte, analisaremos a representação gráfica de uma função de duas 

variáveis para verificar se permite que o gráfico cumpra seu papel heurístico, se 

permite a realização de tratamentos no registro gráfico e quais apreensões ocorrem 

no registro gráfico, a fim de desenvolver a visualização para identificar os valores 
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máximo, mínimo e ponto de sela dessa representação gráfica. Além disso, para 

fazer essa análise, escolhemos a variável visual, posição da superfície, isto é, 

utilizaremos o registro gráfico CAS_MATH. 

Consideramos a função definida algebricamente por 𝑓(𝑥, 𝑦) = 𝑥3 + 3𝑥𝑦2 −

15𝑥 − 12𝑦 + 6, no domínio [−3,3] × [−3,3]. Sua representação gráfica é mostrada 

na Figura 49, e para isso escrevemos o comando Plot3D[𝑥3 + 3𝑥𝑦2 − 15𝑥 − 12𝑦 +

6, {𝑥, −3,3}, {𝑦, −3,3}, AxesLabel → {X,Y,Z}]. Pela apreensão perceptiva, percebemos 

que o gráfico tem um valor máximo e um valor mínimo. 

Figura 49. Registro gráfico CAS_MATH da função f(x, y)=x3+3xy2-15x-12y+6. 

 

Fonte: Construção da autora. 

De fato, por meio de tratamentos nesse registro, ou seja, por meio de 

modificações posicional e ótica, podemos movimentar o gráfico e nos aproximar do 

possível ponto onde a função tem o valor mínimo, por exemplo, conforme mostra a 

Figura 50. 

Figura 50. Modificações posicional e ótica no registro gráfico CAS_MATH. 

 

Fonte: Construção da autora. 
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Se focarmos no eixo z, poderemos conjecturar, por exemplo, que temos um 

valor mínimo no ponto (1,1). Para comprová-lo, pelas modificações ótica, posicional 

e mereológica, observaremos a relação entre a superfície e os planos 

perpendiculares ao eixo z (variável visual do registro gráfico CAS_MATH), conforme 

mostra a Figura 51. Isso significa que, por meio dessas modificações, identificamos 

o valor mínimo. 

Podemos observar na Figura 51(a) e Figura 51(b) que os planos 

representados por z=-35 e z=-25, respectivamente, não intersectam à superfície. No 

entanto, na Figura 51(c) o plano intersecta a superfície em um ponto, e, pela 

apreensão operatória do registro gráfico CAS_MATH, observamos que a superfície 

se curva para cima (variável visual) e está completamente por cima do plano. 

Figura 51. Modificações ótica, posicional e mereológica no registro gráfico CAS_MATH. 

 
(a) 

 
(b) 

 
(c) 

Fonte: Construção da autora. 
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Podemos conjecturar, então, que o valor mínimo da função encontra-se 

quando o plano perpendicular ao eixo z é tangente à superfície. O plano com essas 

características seria o plano representado por z=-22, como mostra a Figura 52. 

Figura 52. A superfície está sobre o plano z= -22. 

 

Fonte: Construção da autora. 

Notamos que esse plano, girando o gráfico ao redor do plano xy e ao redor 

do eixo z, é tangente à superfície, e a superfície encontra-se totalmente sobre esse 

plano, além de afirmar que isso ocorre perto de um ponto de coordenadas (𝑥0, 𝑦0). 

Na sequência, encontraremos esse ponto onde a função tem o valor máximo. 

Assim, na Figura 53, podemos observar, pela apreensão perceptiva, que 

essa representação tem um valor máximo. Da mesma maneira, por meio de 

modificações ótica e posicional no registro gráfico CAS_MATH, movimentamos o 

gráfico e aproximamos do possível ponto onde a função tem o valor máximo, 

conforme mostra a Figura 53. 

Figura 53. Modificação ótica no registro gráfico CAS_MATH. 

 

Fonte: Construção da autora. 
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Na sequência, se focarmos no eixo z, poderemos, também, conjecturar que 

temos um valor máximo no ponto (−1,1). Para comprovar isso, tomaremos a 

representação gráfica de planos perpendiculares ao eixo z (modificações 

mereológicas no registro gráfico CAS_MATH) (ver Figura 54a) para assim, 

discriminando uma variável visual (posição da superfície em relação ao plano 

perpendicular ao eixo z), observarmos a relação entre a superfície e esses planos, 

conforme mostra a Figura 54a. Assim, observamos, baseado nessas modificações 

no registro gráfico CAS_MATH, que a superfície se curva para baixo e está 

completamente sob o plano (ver Figura 54b). 

Figura 54. Modificação ótica, posicional e mereológica no registro gráfico CAS_MATH. 

 

(a) 

 

(b) 

Fonte: Construção da autora. 

Conjecturamos, então, que o valor máximo da função encontra-se quando o 

plano perpendicular ao eixo z é tangente à superfície. E o comportamento do plano, 

em relação à superfície, é semelhante ao caso do valor mínimo. 
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Na Figura 55, podemos verificar que ocorre um máximo local no ponto 

(−2,−1), porque, ao girar o gráfico ao redor do plano xy (ver Figura 55a) e ao redor 

do eixo z, (ver Figura 55b), esse plano é tangente à superfície, e a superfície 

encontra-se totalmente sob esse plano. 

Figura 55. Modificação mereológica no registro gráfico CAS_MATH. 

 

(a) 

 

(b) 

Fonte: Construção da autora. 

Em seguida, afirmamos que o estudo do valor mínimo e máximo é local, pois, 

aproximamo-nos até ficar bem perto tanto do valor mínimo quanto do valor máximo 

para formular a relação da superfície com o seu plano tangente. Formalizamos essa 

afirmação por meio da definição: 

Definição Uma função de duas variáveis tem um mínimo local em um ponto 

(𝑥0, 𝑦0) se há um círculo centrado em (𝑥0, 𝑦0), de modo que 𝑓(𝑥, 𝑦) ≥ 𝑓(𝑥0, 𝑦0) para 

todo ponto (𝑥, 𝑦) no domínio de 𝑓 que está situado dentro do círculo. Uma função 

tem um máximo local em um ponto (𝑥0, 𝑦0) se há um círculo centrado em (𝑥0, 𝑦0), 
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de modo que  𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥0, 𝑦0) para todo ponto (𝑥, 𝑦) no domínio de 𝑓 que está 

situado dentro do círculo. 

Para validar essas conjeturas, no que diz respeito ao valor mínimo e máximo 

locais de uma função de duas variáveis, sigamos para o registro algébrico, pois 

sabemos que a representação algébrica do plano tangente está definida por: 

𝑧 − 𝑧0 = 𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0), 

e, a representação algébrica de um plano perpendicular ao eixo z é: 

𝑧 = 𝑧0. 

Logo, comparando as duas representações algébricas, já que se trata do 

mesmo plano, afirmamos que as derivadas parciais de primeira ordem no ponto 

(𝑥0, 𝑦0) são zero, isto é,  

𝑓𝑥(𝑥0, 𝑦0) = 0 e 𝑓𝑦(𝑥0, 𝑦0) = 0. 

Assim, substituindo o valor das derivadas parciais na equação do plano 

tangente, obtemos 𝑧 − 𝑧0 = 0 ou equivalentemente, 𝑧 = 𝑧0. Formalizamos esse 

resultado por meio do teorema seguinte: 

Teorema: Se uma função 𝑓 tem um máximo ou mínimo local em (𝑥0, 𝑦0) e 

as derivadas parciais de primeira ordem de 𝑓 existem nesses pontos, então 

𝑓𝑥(𝑥0, 𝑦0) = 0 e 𝑓𝑦(𝑥0, 𝑦0) = 0. E a definição: 

Definição: Um ponto (𝑥0, 𝑦0) é dito ser um ponto crítico de 𝑓 se 𝑓𝑥(𝑥0, 𝑦0) =

0 e 𝑓𝑦(𝑥0, 𝑦0) = 0 ou se uma das derivadas parciais não existe. 

Na sequência, no registro algébrico, encontramos as derivadas parciais e as 

igualamos a zero, obtendo as equações:  

𝑓𝑥(𝑥, 𝑦) = 3𝑥2 + 3𝑦2 − 15 = 0  e  𝑓𝑦(𝑥, 𝑦) = 6𝑥𝑦 − 12 = 0, 

Ao resolver esse sistema de equações, obtemos os pontos críticos de 

coordenadas: (2, 1); (−2,−1); (1,2) e (−1,−2). 

Assim, é preciso notar que, no tocante à visualização do valor máximo e 

mínimo, o gráfico representado no software Mathematica cumpre seu papel 

heurístico à medida que permite fazer conjecturas em relação à natureza dos 
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pontos críticos, além de permitir que sejam efetuados tratamentos no registro 

gráfico e de utilizar a apreensão operatória e discursiva, uma vez que as operações 

visuais de tipo ótico, posicional e mereológica desenvolvem-se para relacionar 

esses valores às derivadas parciais de primeira ordem. 

No entanto, existem outros pontos críticos. Para saber sua natureza, apoiar-

nos-emos, de maneira semelhante, na visualização. 

Substituindo, no registro algébrico, as coordenadas dos pontos críticos, (1,2) 

e (−1,−2) na lei de formação da função de duas variáveis reais citada 

anteriormente, obtemos, segundo o teorema, os planos perpendiculares ao eixo Z 

e tangentes à superfície, isto é, z=-20 e z=32, respectivamente. Voltamos para o 

registro gráfico, representando esses planos (modificação mereológica), conforme 

Figura 56. Para isso, escrevemos os comandos 

ContourPlot3D[{𝑧 == 32}, {𝑥, −2,0}, {𝑦, −3,−1}, {𝑧, 30,35}, AxesLabel → {X,Y,Z},

Mesh → False];  ContourPlot3D[{𝑧 == −20}, {𝑥, 0,3}, {𝑦, 0.5,2.5}, {𝑧, −25,−10},

AxesLabel → {"X", "Y", "Z"},Mesh → False, ColorFunction → "RustTones"]  

e Show[𝐾, k1, k3] onde K representa a superfície, k1 representa o plano z=32 e k3 

representa o plano z=-20. 

Figura 56. Representação gráfica dos planos z=-20; z=32. 

 

Fonte: Construção da autora. 

Recorremos à apreensão perceptiva e operatória para conjecturar que a 

superfície tanto no ponto (-1,-2) quanto no ponto (1,2) não está sobre o plano nem 

sob o plano. Pela apreensão operatória, isto é, realizando modificações óticas 

(ampliamos o gráfico), aproximamo-nos do ponto (-1,-2), conforme Figura 57a, 

realizando modificações posicionais (ver Figura 57b), identificamos uma variável 



105 

 
visual, isto é, a relação da superfície com o plano z=32 no ponto (-1,-2), conforme 

Figura 57. 

Figura 57. Comportamento do plano z=-20 no tocante à superfície. 

(a) 
(b) 

Fonte: Construção da autora. 

Formulamos, conforme mostra a Figura 57, que o plano representado por 

z=-32 não está sobre nem sob o plano, ou seja, o plano atravessa a superfície. 

Então, 𝑓 não pode ter um mínimo nem máximo no ponto (−1,−2). 

No caso do ponto crítico, representado por (1,2), recorremos à apreensão 

operatória, por meio de modificações. Ao realizarmos modificações óticas 

(ampliamos o gráfico), aproximamo-nos do ponto (1,2), conforme Figura 58a, e ao 

realizar modificações posicionais (ver Figura 58b), identificamos uma variável 

visual, isto é, a relação da superfície com o plano z=-20 no ponto (1,2), conforme 

Figura 57. 

Figura 58. Relação entre o plano z=-20 e a superfície. 

 

(a)  

(b) 

Fonte: Construção da autora. 
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O plano representado por z=-20 também atravessa a superfície. Então, de 

maneira semelhante, formulamos que 𝑓 não pode ter um mínimo nem máximo no 

ponto (1,2). 

Assim, a natureza dos pontos críticos encontrados pode ser determinada 

graças às condições especiais dadas pelo teorema mencionado anteriormente, 

mas percebemos que o estudo das derivadas parciais de primeira ordem não é 

suficiente para a ocorrência de valores máximos e mínimos, porque nesses dois 

pontos críticos, (1,2) e (-1,-2), a função não tem valor máximo nem mínimo. Isso 

acontece pela suposição de que a função tinha valor máximo e/ou mínimo nesses 

pontos críticos. Assim, formalizaremos, por meio de outro teorema, as condições 

gerais suficientes para a ocorrência de valores extremos locais.  

Teorema: Suponha que ( , )f x y  e suas derivadas parciais de primeira e 

segunda ordem sejam contínuas em um disco centrado em 0 0( , )x y  e que 

0 0 0 0( , ) ( , ) 0x yf x y f x y  . Então: 

1. f  tem um máximo local em 0 0( , )x y  se 0xxf   e 𝑓𝑥𝑥𝑓𝑦𝑦 − (𝑓𝑥𝑦)
2 > 0 

em 0 0( , )x y . 

2. f  tem um mínimo local em 0 0( , )x y  se 0xxf   e 𝑓𝑥𝑥𝑓𝑦𝑦 − (𝑓𝑥𝑦)
2 > 0  

em 0 0( , )x y . 

3. f  tem um ponto de sela em 0 0( , )x y  se 𝑓𝑥𝑥𝑓𝑦𝑦 − (𝑓𝑥𝑦)
2 < 0 em 0 0( , )x y

. 

4. f  pode ter um máximo local ou mínimo local em 0 0( , )x y , ou 0 0( , )x y  

pode ser um ponto de sela de f , se 𝑓𝑥𝑥𝑓𝑦𝑦 − (𝑓𝑥𝑦)
2 = 0. 

É necessário destacar que o termo representado algebricamente por 

𝑓𝑥𝑥𝑓𝑦𝑦 − (𝑓𝑥𝑦)
2 é o determinante da matriz Hessiana, ou seja: |

𝑓𝑥𝑥 𝑓𝑥𝑦

𝑓𝑦𝑥 𝑓𝑦𝑦
| = 𝑓𝑥𝑥𝑓𝑦𝑦 −

(𝑓𝑥𝑦)
2. 

Dessa forma, também é preciso frisar que, no tocante à visualização do 

ponto de sela, o registro gráfico CAS_MATH desempenha seu papel heurístico à 



107 

 
medida que permite fazer conjecturas em relação à natureza dos pontos críticos, 

além de permitir que sejam efetuados tratamentos no registro gráfico e utilizar a 

apreensão operatória, dado que as operações visuais de tipo ótico, posicional e 

mereológica se desenvolvem a fim de mostrar a necessidade de condições 

suficientes para a ocorrência de valores máximos, mínimos e pontos de sela. 

No próximo capítulo, apresentaremos a fase de experimentação, as 

atividades com suas análises a priori, a posteriori e sua respectiva validação. 
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Capítulo 3 - EXPERIMENTAÇÃO E ANÁLISES 

 

No presente capítulo, descrevemos as características do curso em que se 

concretizam o estudo e os sujeitos da pesquisa. Explicamos o desenvolvimento do 

experimento e analisamos a sequência de atividades segundo o quadro teórico e a 

metodologia de pesquisa. 

Esta pesquisa está relacionada ao tópico, valores máximos e mínimos de 

funções de duas variáveis reais. A partir das situações criadas, supõe-se que os 

alunos participantes possuam conhecimentos prévios: retas e planos, funções 

vetoriais de uma variável real, curvas, superfícies quadráticas, domínio de uma 

função de duas variáveis, limite, continuidade, derivadas parciais, 

diferenciabilidade, derivadas direcionais e gradientes, planos tangentes e planos 

normais. Sendo assim, espera-se que os alunos do curso Matemática III estejam 

aptos a participar de nossa pesquisa, considerando que as noções exigidas para o 

êxito deste estudo tenham sido trabalhadas. 

Por conseguinte, nossa pesquisa ocorreu em cinco encontros, como pode 

ser visto no Apêndice A (p. 183), cujo objetivo foi estudar como se dá o processo 

de visualização durante a aprendizagem das noções de valores máximos e 

mínimos locais de funções de duas variáveis reais, para alunos de engenharia, 

além de mobilizar seus conhecimentos prévios supostamente adquiridos na sala de 

aula para chegar à solução de quatro situações didáticas e uma situação de 

avaliação, conforme Quadro 9.  

Os alunos trabalharam tanto com o CAS Mathematica quanto com as noções 

de funções de duas variáveis reais mencionadas anteriormente, reutilizando os 

recursos do software, em especial os comandos que permitem representar 
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graficamente pontos, planos e superfícies no espaço. O tempo de duração de cada 

situação didática, mesmo para a atividade de avaliação, foi de três horas.  

Quadro 9. Encontros na Experimentação 

Encontro com 
os alunos 

Conteúdo 

1 
Uma situação didática: maximizar a função 
lucro em relação à quantidade. 

2 
Uma situação didática: maximizar a função 
lucro em relação aos preços. 

3 
Uma situação didática: minimizar a função 
perda de calor de um edifício comercial. 

4 Uma situação didática: ponto de sela 

5 
Situação de avaliação para aplicar os 
conhecimentos adquiridos. 

Fonte: Construção da autora. 

As situações didáticas e a atividade de avaliação foram apresentadas de 

maneira sequencial, para levar o aluno a mobilizar noções de superfícies 

quadráticas, de derivadas parciais, de plano tangente. É importante destacar que 

os conteúdos de aplicações das derivadas parciais para o estudo dos valores 

máximos e mínimos eram novos para eles. 

Além disso, esta pesquisa tem a aprovação do Comitê de Ética, como pode 

ser visto no Anexo B (p. 198). 

3.1  CARACTERIZAÇÃO DA FACULDADE 

Realizamos a coleta de dados no laboratório de computação do curso de 

Engenharia de Alimentos da Universidade Nacional do Callao, da disciplina 

Matemática III, na cidade de Lima, no Peru. 

As disciplinas da matriz curricular do curso são divididas por semestres 

acadêmicos, em um total de dez semestres. A disciplina de Matemática III é 

oferecida no terceiro semestre do curso. O número de alunos matriculados nessa 

disciplina é 80, dos quais 28 são alunos que fazem a disciplina pela primeira vez. 

Esses alunos foram a nossa população-alvo, uma vez que nunca tiveram contato 
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com as noções de valor máximo, mínimo e ponto de sela, exigidos para resolverem 

as situações.  

Para o desenvolvimento da disciplina, foram necessárias quinze semanas, 

divididas em teóricas e práticas. Segundo a ementa da disciplina Matemática III, o 

estudo dos valores extremos de uma função de duas variáveis reais, assim como 

os temas relacionados às aplicações das derivadas parciais, corresponde à sexta 

semana, como pode ser visto no Anexo A (p. 193). 

3.2  OS SUJEITOS DE PESQUISA 

Os sujeitos de pesquisa de nosso estudo foram escolhidos conforme o 

critério supracitado, levando em consideração a voluntariedade. Conversamos com 

os alunos sobre a nossa intenção e os convidamos a participar. Fizemos uma 

pequena explicação de como se daria o processo.  

Para responder as questões levantadas no objetivo geral e analisar as 

observações feitas na sala de aula: como os alunos participam, interagem, 

resolvem as questões, quais estratégias adotadas e, considerando o tipo de 

metodologia e o impacto esperado, decidimos trabalhar com 10 alunos dos 28 que 

fazem a disciplina pela primeira vez e conhecem os comandos básicos do software 

Mathematica. 

Além dos estudantes, participaram o professor do curso (que foi um dos 

observadores) e quatro observadores (colegas da Universidade do Callao). Tanto 

os alunos quanto o professor do curso assinaram o termo de compromisso, 

aceitando que as informações provenientes das análises do material coletado 

poderiam ainda ser utilizadas pelos pesquisadores em publicações e/ou eventos 

científicos, como pode ser visto nos Anexos C e D (ver p. 201 e 202, 

respectivamente).  

Ressaltamos que os alunos trabalharam em duplas e cada qual, chamada 

grupo, utilizou um laptop durante os encontros. Os grupos são chamados de Grupo 

1, Grupo 2, Grupo 3, Grupo 4 e Grupo 5 (Quadro 10). Os alunos também podiam 
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utilizar calculadora, lápis e papel. Nesta pesquisa, os observadores registraram por 

escrito as observações do grupo, como pode ser visto no Apêndice B (p. 188). 

Quadro 10. Os sujeitos da pesquisa. 

Número de grupo Alunos 

1 
 Xiomara 

 Yorman 

2 
 Enrique 

 Misael 

3 
 Anny 

 Romario 

4 
 Patricia 

 Giancarlo 

5 
 Sindy 

 Antony 

Além disso, gravamos, no computador, as telas das atividades de todos os 

grupos observados. Na sequência, apresentaremos as situações didáticas e a 

atividade de avaliação com suas análises a priori e a posteriori. 

3.3 ANÁLISE A PRIORI E A POSTERIORI DAS SITUAÇÕES 

Nesta parte do trabalho, apresentamos as análises a priori e a posteriori das 

situações e a atividade final, de acordo com a metodologia da Engenharia didática.  

Usamos a teoria das Situações Didáticas, de Brousseau (1998), porque é 

um modelo de interação de um sujeito com um meio específico que determina 

certos conhecimentos. Assim, as situações dão ao sujeito a possibilidade de 

construir, por si mesmo, um conhecimento novo. E a visualização, por ser um meio 

para compreender os valores máximos e mínimos de funções de duas variáveis 

reais, possibilitou a observação de diferentes registros de representação semiótica 

mobilizados pelos alunos, além das diferentes apreensões e modificações óticas, 

posicionais e mereológicas do registro gráfico, para discriminar suas variáveis 

visuais e relacioná-las aos valores significantes do registro algébrico, apresentado 

nas definições e teoremas, e assim construir a noção de valores máximos e 

mínimos de funções de duas variáveis reais. 
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Sendo assim, analisamos como os alunos exploraram o significado dos 

valores máximo, mínimo e ponto de sela de funções de duas variáveis reais por 

meio da visualização. Propiciamos situações de aprendizagem, para que 

pudessem construir no papel ou na tela do computador seus próprios gráficos.  

Os alunos foram levados a um laboratório de computação da Faculdade, 

onde receberam uma folha de papel com uma situação cujos procedimentos e 

justificativa deveriam ser descritos. Em seguida, os participantes resolveram a 

mesma situação no computador. 

O desenvolvimento das situações foi realizado em uma ficha de trabalho que 

foi entregue aos alunos pela professora investigadora. A professora investigadora 

observou o trabalho dos grupos e somente se manifestava quando solicitada, 

limitando-se a esclarecer alguns termos em espanhol. A institucionalização das 

noções foi realizada ao final de cada situação, levando em conta as considerações 

e formulações dos grupos. 

O esclarecimento do texto, apenas quando solicitado, pretende que o 

professor não induza os grupos na direção das soluções esperadas. A mediação 

do professor será por meio de perguntas que impulsionem a mobilizar os supostos 

conhecimentos prévios. 

Neste trabalho, foram abordadas as variáveis microdidáticas, ou locais, que 

são aquelas relacionadas “à organização local da Engenharia, isto é, à organização 

de uma sequência ou de uma fase” (ARTIGUE, 1988, p. 291). 

As escolhas das variáveis microdidáticas para a elaboração das situações 

didáticas visam utilizar e enfatizar a mudança entre registros em língua natural, 

algébrico e gráfico abordados, dentro de contextos da economia e física, assim 

como o tratamento dentro do registro gráfico e/ou no registro gráfico CAS, a partir 

das operações visuais nas ações das modificações óticas, posicionais e 

mereológicas de funções de duas variáveis reais, cujas representações algébricas 

são conhecidas ou não conhecidas pelos grupos. Essas escolhas permitem a 

conjectura e a busca de soluções. 
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Situação 019 

Uma empresa de Smartphone está vendendo para o setor adolescente, 

por seis meses, um novo modelo de alta tecnologia e desempenho em duas 

cidades de Peru: Cuzco y Piura. A empresa, para facilitar seu estudo de 

mercado, considera necessário que o preço unitário esteja determinado 

linearmente pela quantidade demandada nesse período de tempo. Desse modo, 

em Cuzco, se o preço é de S/10. 300, a demanda é de 700 Smartphones; se o 

preço é de S/. 500, a demanda é de 500 Smartphones; se o preço é de S/. 1000, 

nenhum aparelho é vendido. Por outro lado, em Piura, se o preço é de S/. 300, 

a demanda é de 540 Smartphones; se o preço é de S/. 500, a demanda é de 340 

Smartphones e se o preço é de S/. 840, nenhum aparelho é vendido. O Custo 

fixo de fabricação é de 60 soles e o custo variável que depende da quantidade 

produzida é quarenta vezes a quantidade vendida nas duas cidades. Quantos 

Smartphones devem ser vendidos em cada cidade para obter o maior lucro e 

qual é o valor desse lucro? 

Análise a priori 

O objetivo desta situação é levar o aluno a perceber a existência do valor 

máximo local e do valor de máximo local de uma função de duas variáveis do tipo 

𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥 + 𝑑𝑦 + 𝑒 a partir da utilização de algumas noções básicas 

da área da economia, tais como: função demanda, função oferta, função custo total, 

função receita, função lucro, visto que os alunos de Engenharia estudam a 

disciplina de Engenharia Econômica e Financeira no mesmo semestre. Ademais, a 

representação algébrica da função lucro é uma função de duas variáveis reais, cuja 

representação gráfica é um paraboloide circular reto conhecido pelos alunos, pois, 

segundo a ementa da disciplina, essa noção já tinha sido ensinada. Dessa forma, 

consideramos que os alunos podem resolver a situação-problema de maneira 

algébrica. 

Expomos, a seguir, a resolução do problema, identificando a variável que 

representa a quantidade de Smartphone vendida por seis meses, por exemplo, 𝑞, 

____________ 

9 Baseado nos dados proporcionados no livro Matemáticas para administración y economia. Haeussler, Ernest 

F. Pretince Hall 2003. p. 776 

10 S/. é o símbolo da moeda corrente no Peru (nuevos soles). 
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e a variável que representa o preço unitário do Smartphone, por exemplo, p. 

Ademais, segundo os dados do problema, o preço está relacionado com a 

quantidade total demandada de Smartphones e essa relação é linear. Assim, o 

preço será determinado pela função demanda de mercado, que é a relação entre p 

e q, representada algebricamente por 𝑝 = 𝑓(𝑞). 

Portanto, o preço unitário na cidade de Cuzco, representado por p1, está 

relacionado com a quantidade de Smartphones vendida por seis meses, na mesma 

cidade, representada por q1. Pode-se fazer uso de uma tabela para registrar os 

dados, por exemplo: 

q1 700 500 0 

p1 300 500 1000 

De maneira análoga, o preço unitário na cidade de Piura, representado por 

p2, está relacionado com a quantidade de Smartphones vendida por seis meses, na 

mesma cidade, representado por q2. Pode-se, também, recorrer a uma tabela para 

registrar os dados, por exemplo: 

q2 540 340 0 

p2 300 500 840 

Desse modo, a função demanda para a cidade de Cuzco está definida e 

representada por 𝑝1 = 𝑓(𝑞1) e a função demanda para a cidade de Piura está 

definida e representada por 𝑝2 = 𝑓(𝑞2). 

Dado que essa relação é linear, definimos a função demanda tanto para a 

cidade de Cuzco, 𝑝1, quanto para Piura, 𝑝2, como: 𝑝1 − 300 = 𝑚1(𝑞1 − 700), em 

que m1 representa o coeficiente angular da reta e a função demanda para a cidade 

de Cuzco, ou seja, 𝑚1 =
500−300

500−700
, substituindo na equação anterior resulta: 

𝑝1 − 300 =
500 − 300

500 − 700
(𝑞1 − 700)

𝑝1 = −(𝑞1 − 700) + 300
𝑝1 = −𝑞1 + 1000
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De maneira semelhante, m2 representa o coeficiente angular da reta que representa 

a função demanda para a cidade de Piura, ou seja, 

𝑝2 − 300  = 𝑚2(𝑞2 − 540)

𝑝2 − 300 =
500 − 300

340 − 540
(𝑞2 − 540)

𝑝2 = −(𝑞2 − 540) + 300
𝑝2 = −𝑞2 + 840

 

Como a função lucro é definida como a diferença entre a função receita, 

representada por R, e a função custo, representada por C, é necessário determinar 

as expressões algébricas que as representam. Chama-se função receita o produto 

da quantidade vendida de um produto pelo preço de venda, então podemos 

representá-la, tanto para a cidade de Cuzco quanto para Piura, respectivamente, 

pela expressão:  

𝑅1(𝑞1) = 𝑞1𝑓(𝑞1) e 𝑅2(𝑞2) = 𝑞2𝑓(𝑞2) 

O custo pela venda dos smartphones nas duas cidades juntas é dado por:  

𝐶(𝑞1, 𝑞2) = 60 + 40(𝑞1 + 𝑞2). 

Logo, a função lucro está definida por: 

𝐿(𝑞1, 𝑞2) = 𝑅1(𝑞1) + 𝑅2(𝑞2) −  𝐶(𝑞1, 𝑞2)

= 𝑞1𝑓(𝑞1) + 𝑞2𝑓(𝑞2) − (60 + 40(𝑞1 + 𝑞2))

= 𝑞1(1000 − 𝑞1) + 𝑞2(840 − 𝑞2) − 60 − 40𝑞1 − 40𝑞2

 

= 1000𝑞1 − 𝑞1
2 + 840𝑞2 − 𝑞2

2 − 60 − 40𝑞1 − 40𝑞2, 

Ou seja,  

𝐿(𝑞1, 𝑞2) = −𝑞1
2 − 𝑞2

2 + 960𝑞1 + 800𝑞2 − 60 

Para solucionar o problema, determinando o lucro máximo e as quantidades, 

temos o caminho algébrico. 

Algebricamente seria possível uma solução a partir de tratamentos na 

expressão algébrica, no sentido de transformá-la na forma canônica, isto é,  

−(𝐿 − 390340) = (𝑞1 − 480)2 + (𝑞2 − 400)2, 
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porque a partir dessa expressão é possível associá-la a uma forma algébrica 

conhecida, ou seja, associá-la a um paraboloide circular reto que abre para baixo. 

A partir dessa representação algébrica, pode-se identificar o par ordenado (480,400) 

como o ponto que determina o valor máximo para o lucro, assim L(480,400) = 390340 

é o valor máximo da função. 

As variáveis didáticas são as seguintes:  

 Os valores dos preços dos smartphones; 

 A quantidade de smartphones vendidos; 

 A relação do preço unitário de smartphone com a quantidade vendida de 

smartphone; 

 A função custo total; 

 A função lucro, cuja representação algébrica é uma função de duas 

variáveis do tipo 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥 + 𝑑𝑦 + 𝑒.. 

Nessa parte, esperamos que todos os grupos, após lerem o problema, 

realizassem a conversão do registro em língua natural para o registro algébrico. 

Para isso, os grupos poderiam representar o objeto preço com a letra p e o objeto 

quantidade de smartphones vendidos com a letra q, dado que os grupos possuem 

noções de economia. A venda dos smartphones acontece em duas cidades 

diferentes, então poderia o grupo representar cada um dos objetos mencionados 

acima por p1 e q1, respectivamente, para a cidade de Cuzco, e, por p2 e q2, para a 

cidade de Piura. Logo, organizaram esses dados colocando-os em uma tabela. 

Visto que a relação entre o preço e a quantidade é linear, esperamos que os 

grupos, por meio de tratamentos no registro algébrico, isto é, pelas operações 

possíveis em equações e expressões algébricas, definissem a função de demanda 

tanto para Cuzco quanto para Piura, respectivamente, como: 𝑝1 = −𝑞1 + 1000 e 

𝑝2 = −𝑞2 + 840. Dessa maneira, os grupos poderiam identificar a função receita e, 

por meio de tratamento no registro algébrico, defini-la como:  

𝑅1(𝑞1) = 𝑞1𝑓(𝑞1) = −𝑞1
2 + 1000𝑞1 e 𝑅2(𝑞2) = 𝑞2𝑝(𝑞2) = −𝑞2

2 + 840𝑞2 

Uma vez que a função lucro é definida como a diferença entre a função 

receita e a função custo, esperamos que os grupos de alunos expressassem 



118 

algebricamente essa diferença como 𝐿(𝑞1, 𝑞2) = 𝑅1(𝑞1) + 𝑅2(𝑞2) −  𝐶(𝑞1, 𝑞2), 

percebendo que é uma função de duas variáveis reais. Por meio de tratamentos no 

registro algébrico, definiram a função lucro como: 

𝐿(𝑞1, 𝑞2) = −𝑞1
2 − 𝑞2

2 + 960𝑞1 + 800𝑞2 − 60. 

Poderia acontecer que os grupos de alunos percebessem que essa 

representação algébrica poderia ser expressa de forma canônica como: 

𝐿 = −(𝑞1 − 480)2 − (𝑞2 − 400)2 + 390340 

A partir dessa representação, poderiam formular que a expressão algébrica 

representa uma função de duas variáveis reais, cuja representação gráfica é um 

paraboloide circular reto, que o possível ponto de valor máximo é o ponto (480,400), 

e que por meio da substituição desse ponto na função obtém-se o máximo lucro, 

isto é, o máximo lucro é S/. 390 340. 

Institucionalização local: Nessa situação generalizamos os resultados a 

partir das ações e formulações feitas por todos os grupos. A professora 

investigadora institucionalizou a noção de valor máximo por meio da observação. 

Diz-se que a função de duas variáveis tem um máximo local em um ponto 

(x0,y0); se perto desse ponto, o valor da função é maior ou igual ao valor da 

função em qualquer outro ponto (x,y) do domínio dele. 

Análise a posteriori 

No início dessa situação didática todos os alunos leram o enunciado do 

problema e começaram a trabalhar em grupos, trocaram ideias, realizaram as 

ações e formulações para dar solução à situação como tínhamos pressuposto na 

análise a priori. Os tratamentos no registro numérico foram efetuados com uma 

calculadora científica. 

Na sequência, analisaremos com mais detalhe as ações, em relação à 

função demanda, a qual é uma função de uma variável real, dos grupos 2, 3 e 5, 

visto que realizaram outras ações que não tínhamos previsto na análise a priori. 

O grupo 2, no ambiente lápis e papel, representou a função demanda tanto 

para a cidade de Cuzco quanto para Piura, e coordenou os registros tabular, gráfico 

e algébrico, conforme a Figura 59. Observamos que o grupo 2 realizou a conversão 
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do registro em língua natural para o registro tabular, do registro tabular para o 

registro gráfico, a partir de uma construção ponto a ponto, ou seja, o tratamento da 

representação gráfica limitou-se a alguns valores particulares e aos pontos 

marcados no plano referencial, o que favoreceu o traçado do gráfico. 

Figura 59. Representações semióticas da função demanda. 

 

Fonte: Produção do grupo 2. 

Na passagem do registro gráfico para o registro algébrico, o grupo mobilizou 

a noção de inclinação de uma reta para encontrar a equação correspondente, 

identificando as variáveis visuais, definidas por Duval (ver p. 63): sentido de 

inclinação e posição sobre o eixo y, correspondentes às unidades significativas da 

expressão algébrica da função linear afim 𝑦 = 𝑎𝑥 + 𝑏, isto é, o coeficiente a e a 

constante b. 

Observamos, também, que o grupo 2 representou as variáveis da função 

demanda de duas formas:  as variáveis x e y, e QC e QP, que representam as 

quantidades de smartphones vendidas em Cuzco e Piura, respectivamente, PC e 

PP, que representam os preços dos Smartphones tanto em Cuzco quanto em Piura. 

Afirmamos que o grupo 2 conseguiu desenvolver o processo de visualização 

na construção da função demanda, porque organizou as relações entre as variáveis 

visuais do registro gráfico com as variáveis significantes do registro algébrico, isto 

é, o tratamento na representação gráfica foi efetivado desde a abordagem de 

interpretação global das propriedades gráficas, o que garante o processo de 

visualização na construção de uma função de uma variável real. 
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Em relação à construção da função lucro (função de duas variáveis reais), 

uma ação que merece nossa atenção é a produção, no ambiente lápis e papel, do 

registro gráfico da função lucro feita pelo grupo 2, para entender o significado do 

valor máximo, como mostra a Figura 60. Tal fato não havia sido pressuposto na 

nossa análise a priori. 

Figura 60. Produção de uma representação gráfica pelo grupo 2. 

 

Fonte: Produção do grupo 2. 

Na passagem do registro algébrico para seu registro gráfico, o grupo 2 

identificou no registro algébrico (equação em forma canônica) o vértice do 

paraboloide circular e o eixo desse paraboloide (eixo z), o que ajudou na conversão 

para o registro gráfico. Pela apreensão operatória nesse registro, isto é, no desenho 

de algumas variáveis visuais, corte no plano vertical y e uma curva de contorno 

(modificação mereológica) e translação do registro gráfico (modificação posicional), 

o grupo 2 teve uma apreensão perceptiva da superfície e mostrou que a função 

lucro tem um valor máximo no ponto de coordenadas (480, 400). Isto quer dizer 

que o grupo identificou uma associação entre valores numéricos, pois mostrou 

esses valores, representados no registro algébrico, no registro gráfico.  

O grupo 3, realizou ações diferentes, visto que formou o registro gráfico da 

função demanda somente para a cidade de Cuzco, realizando a conversão do 

registro tabular para o registro gráfico, conforme a Figura 61. O tratamento na 
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representação gráfica limitou-se a alguns valores particulares e aos pontos 

marcados no plano referencial. 

Figura 61. Conversão de registros de função demanda. 

 

Fonte: Produção do grupo 3. 

Para formar a representação algébrica da função demanda, o grupo 3, a 

partir da representação tabular, substituiu os valores na equação da função afim, 

𝑃(𝑎) = 𝑎𝑄 + 𝑏, para encontrar a representação algébrica da função demanda, 

conforme mostra a Figura 62. Observemos que, na representação algébrica dessa 

função, a representação das variáveis é própria do grupo 3.  

Figura 62. Conversão de registro tabular para o registro algébrico. 

 

Fonte: Produção do grupo 3. 

Constatamos que o grupo 3 não realizou modificações no registro gráfico e 

não identificou nem discriminou as variáveis visuais para, então, associá-las às 

variáveis significantes, 𝑎 e 𝑏, do registro algébrico. Isto quer dizer que na conversão 

do registro gráfico para o registro algébrico não houve um conhecimento das regras 
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de correspondência semântica entre o registro gráfico e a expressão algébrica, a 

qual é necessária para a congruência e para o processo de visualização.  

Assim, observamos que o grupo 3, efetuou a conversão do registro algébrico 

para o registro gráfico CAS_MATH (variável visual). Essa conversão foi realizada 

para ter uma apreensão perceptiva do valor máximo da função lucro, como mostra 

a Figura 63, o que permitiu formular que o valor máximo era aquele encontrado no 

modo algébrico. Isso significa que o registro gráfico CAS_MATH, nesse caso, 

permitiu uma representação icônica do valor máximo para o grupo 3.  

Figura 63. Representação gráfica do valor máximo. 

 

Fonte: Produção do grupo 3. 

No tocante à representação algébrica da função lucro, por meio da análise 

mostrada na Figura 64, o grupo formulou o valor máximo e o valor de máximo da 

função lucro, o que não tínhamos previsto na análise a priori. 

Figura 64. Análise da representação algébrica da função lucro. 

 

Fonte: Produção do grupo 3. 
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O grupo 5, diferente do grupo 2, realizou a conversão do registro em língua 

natural para o registro gráfico e deste registro para o registro algébrico, conforme 

mostramos na Figura 65. 

Figura 65. Representação Gráfica e algébrica da função demanda. 

 

Fonte: Produção do grupo 5. 

Na passagem do registro gráfico para o registro algébrico, o grupo 5 utilizou 

a noção de direção para encontrar a equação correspondente, mobilizando a noção 

de equação vetorial de uma reta, o que não havíamos pressuposto na análise a 

priori. O grupo 5 identificou as variáveis visuais: vetor direção e vetor inicial 

correspondentes às unidades significativas da representação algébrica vetorial da 

reta, 𝑃⃗ = 𝑃⃗ 0 + 𝑡𝑣 , isto é, 𝑃⃗ 0 e 𝑣  : vetor inicial e vetor direção. Por meio de tratamentos 

no registro algébrico, encontra-se a representação algébrica cartesiana da reta. 

Assim, afirmamos que o objetivo dessa situação foi atingido, já que o aluno 

reconheceu a existência de valor máximo e determinou o valor de máximo para 

uma função de duas variáveis. Referente ao processo de visualização, os grupos 

somente construíram as funções lineares de uma variável real. Notamos que as 

situações mobilizadas foram de ação e formulação. 
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Logo, com apoio nas formulações feitas pelos grupos, institucionalizamos 

localmente uma observação, conforme citamos anteriormente. 

Situação 0211 

A contínua necessidade de atender à demanda de produtos variados e 

saudáveis a todo tipo de consumidores motivou uma empresa a elaborar 

bolachas naturais e a lançar no mercado dois tipos delas: a bolacha integral e a 

bolacha de aveia, cuja apresentação é feita em pacotes de 24 unidades. Os 

custos totais de produção são de dois e três reais por pacote, respectivamente. 

A demanda (em milhares de pacotes) de bolachas integrais que pode ser vendida 

é quatro vezes a diferença do preço do segundo produto em relação ao primeiro, 

e a demanda (em milhares de pacotes) de bolachas de aveia é quatro vezes a 

diferença do preço do primeiro produto em relação a duas vezes o preço do 

segundo, mas a preferência dos consumidores por essa bolacha incrementa sua 

demanda sempre em 36 milhares de pacotes. Quais seriam os preços de venda 

por pacote de cada tipo de bolacha para obter o maior lucro e qual é o valor desse 

lucro? Justifique sua resposta. 

Análise a priori 

Essa situação tem por finalidade levar o aluno a compreender as noções de 

valor máximo local e do valor de máximo local de uma função de duas variáveis do 

tipo 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 permitindo que os alunos mobilizem 

seus conhecimentos a respeito de plano tangente a uma superfície e derivadas 

parciais em um ponto que já foram construídas pelos alunos. 

Apresentamos, a seguir, a resolução do problema. Para construir a 

representação algébrica da função lucro – função de duas variáveis reais – 

oferecemos dois procedimentos: O primeiro, de acordo com os dados do problema, 

representa, por exemplo, o objeto custo total de produção tanto do pacote de 

bolacha integral quanto do de aveia por c1 e c2, sendo a função custo total por pacote 

dada por: c1=2 e c2=3, respectivamente. 

____________ 

11 Baseado nos dados proporcionados do livro Matemáticas para administración y economia. Haeussler, Ernest 

F. Pretince Hall 2003, p. 776. 
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A função de demanda é a relação entre o preço, representado por p, e a 

quantidade demanda, representada por q; de acordo com os dados do problema, 

representam, por exemplo, os preços de venda em reais por pacote de cada tipo 

de bolacha por p1 e p2, respectivamente, e a quantidade demanda de pacotes de 

cada tipo de bolacha por q1 e q2, respectivamente. Logo, segundo o problema, a 

função demanda de bolachas integrais é representada algebricamente por:  

𝑞1 = 𝑓(𝑝1, 𝑝2) = 4(𝑝2 − 𝑝1), 

e a função demanda de bolachas de aveia é representada algebricamente por  

𝑞2 = 𝑓(𝑝1, 𝑝2) = 36 + 4(𝑝1 − 2𝑝2). 

Como o lucro por pacote de bolacha integral depende da receita por pacote 

e do custo de produção, é necessário determinar a expressão algébrica que a 

represente. A função Receita é o produto da quantidade vendida por pacote de 

bolacha integral pelo preço de venda, então podemos representá-la pela 

expressão:  

𝑅1(𝑞1) = 𝑝1 

Do mesmo modo, definimos e representamos a função Receita por pacote 

de bolacha de aveia por: 

𝑅2(𝑞2) = 𝑝2 

Como o lucro, representado por l, por pacote de bolacha integral é a 

diferença entre a receita e o custo total, temos que: 𝑙(𝑝1) = 𝑅1(𝑞1) − 𝑐1 = 𝑝1 − 2. O 

lucro por pacote de bolacha de aveia é expresso por 𝑙(𝑝2) = 𝑅1(𝑞2) − 𝑐2 = 𝑝2 − 3. 

Logo, o lucro total é a soma do produto do lucro por pacote de bolacha integral pela 

demanda (em milhares) de pacotes de bolacha integral mais o produto do lucro por 

pacote de bolacha de aveia pela demanda (em milhares) de pacotes de bolacha de 

aveia. Assim, a função lucro é uma função de duas variáveis representada por: 

𝑙(𝑝1, 𝑝2) = (𝑝1 − 2)𝑞1 + (𝑝2 − 3)𝑞2

= (𝑝1 − 2)[4(𝑝2 − 𝑝1)] + (𝑝2 − 3)[36 + 4(𝑝1 − 2𝑝2)]

= (4𝑝1 − 8)(𝑝2 − 𝑝1) + ((𝑝2 − 3)(36 + 4𝑝1 − 8𝑝2)

 

Ou seja, 

𝑙(𝑝1, 𝑝2) = 8𝑝1𝑝2 + 52𝑝2 − 4𝑝1
2 − 4𝑝1 − 8𝑝2

2 − 108. 
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Em um primeiro momento, defini-se a função receita total como a soma da 

receita pela venda (em milhares de pacotes) de bolacha integral mais a receita pela 

venda (em milhares de pacotes) de bolacha de aveia, representando-a 

algebricamente como: 

𝑅𝑇(𝑝1, 𝑝2) = 𝑅1(𝑝1, 𝑝2) + 𝑅2(𝑝1, 𝑝2), 

em que, segundo os dados do problema, a receita pela venda (em milhares de 

pacotes) de bolacha integral é representada algebricamente por: 

𝑅1(𝑝1, 𝑝2) = 4(𝑝2 − 𝑝1). 𝑝1 

e, a receita pela venda (em milhares de pacotes) de bolacha de aveia, é 

representada algebricamente por: 

𝑅2(𝑝1, 𝑝2) = [36 + 4(𝑝1 − 2𝑝2)]. 𝑝2. 

Em um segundo momento, defini-se a função custo total pela produção de 

milhares de bolachas, tanto integrais quanto de aveia, e representá-las 

algebricamente como: 

𝐶(𝑝1, 𝑝2) = 2𝑞1 + 3𝑞2. 

Logo, representa-se a função lucro por:  

𝑙(𝑝1, 𝑝2) = 𝑅𝑇(𝑝1, 𝑝2) − 𝐶(𝑝1, 𝑝2)

= 4(𝑝2 − 𝑝1). 𝑝1 + [36 + 4(𝑝1 − 2𝑝2)]. 𝑝2 − [

= 8𝑝1𝑝2 − 4𝑝1
2 − 8𝑝2

2 + 52𝑝2 − 4𝑝1 − 108

2𝑞1 + 3𝑞2] 

Para determinar o lucro máximo e os preços por sacola de cada tipo de 

bolacha que gera esse lucro, usamos o caminho gráfico, embora só esse registro 

não seja suficiente para resolver o problema. 

Dado que a expressão algébrica da função lucro é desconhecida pelo aluno, 

mesmo que se tente expressá-la de maneira canônica, busca-se o registro gráfico 

para ter uma percepção e perceber seu comportamento. Para isso, escrevemos o 

comando do CAS Mathematica Plot3D[8𝑝1𝑝2 + 52𝑝2 − 4𝑝1
2 − 4𝑝1 − 8𝑝2

2 − 108,

{𝑝1, 0,10}, {𝑝2, 0,10}, PlotRange → {0,50}, AxesLabel → {p1, p2,l}], para gerar o registro 

gráfico CAS_MATH da função lucro como mostra a Figura 66, em que, por exemplo, 

o domínio da função é [0,10]x[0,10], dado que o ponto de valor de máximo fica perto 

desse intervalo e o valor máximo de l se acha no intervalo [0,50]. Além disso, 
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nesses intervalos, pode-se observar a natureza do ponto crítico de uma maneira 

local. 

Figura 66. Representação gráfica da função lucro. 

 

Fonte: Construção da autora. 

Por meio de tratamentos nesse registro gráfico (modificações de tipo ótico e 

posicional) e pela apreensão perceptiva, distinguimos o possível valor máximo. A 

seguir, por meio do comando 

ContourPlot3D[{𝑙 == 25, 𝑙 == 35}, {𝑝1, 2,8}, {𝑝2, 2,8}, {𝑙, 0,50}, AxesLabel → {p1, p2, "l"}], 

traçamos planos paralelos ao plano p1p2 que passam perto do possível valor 

máximo, como é mostrado na Figura 67. 

Figura 67. Representação gráfica dos planos paralelos ao plano p1p2 na superfície. 

 

Fonte: produção da autora com apoio do software Mathematica. 

Pelo que observamos, inferimos que o valor máximo acontece quando o 

plano paralelo ao plano p1p2 é tangente à superfície. Na sequência, voltamos ao 

registro algébrico, considerando a representação algébrica do plano tangente: 𝑧 −

𝑧0 =
𝜕𝑧

𝜕𝑥
(𝑥 − 𝑥0) +

𝜕𝑧

𝜕𝑦
(𝑦 − 𝑦0). 
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Como os planos são paralelos ao plano p1p2, ou seja, são paralelos ao plano 

paralelo a XY, então as derivadas parciais respeito a x e y são zero. Encontramos, 

assim, o ponto em que essas derivadas são zero, isto é, 

𝜕𝑙

𝜕𝑝1
= 8𝑝2 − 8𝑝1 − 4 = 0    e    

𝜕𝑙

𝜕𝑝2
= 8𝑝1 + 52 − 16𝑝2 = 0. 

Ao resolver essas equações, encontramos um único ponto cujas 

coordenadas são (5.5,6), logo o valor máximo acontece nesse ponto, o qual 

chamaremos de ponto crítico. Substituímos as coordenadas desse ponto na função 

lucro para obter o máximo lucro, cujo valor é l = 37 000.  

As variáveis didáticas são as seguintes:  

 A função custo total de produção dos pacotes de bolacha; 

 A função demanda dos pacotes de bolacha; 

 Os preços de venda dos pacotes de bolacha; 

 A função lucro, cuja representação algébrica é do tipo 𝑓(𝑥, 𝑦) = 𝑎𝑥2 +

𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓. 

Nessa parte, esperamos que todos os grupos, após terem lido o enunciado 

do problema, realizassem a conversão do registro em língua natural para o registro 

algébrico, podendo representar o objeto custo total de produção com a letra C, por 

exemplo; o objeto função demanda, por exemplo, por 𝑞 = 𝑓(𝑝1, 𝑝2), dado que, 

segundo os dados da situação, este relaciona a quantidade de pacotes de bolacha 

(em milhares) aos preços unitários de cada pacote de bolacha, e o objeto receita 

total à venda de pacotes de bolachas por RT. Para representar algebricamente cada 

um dos objetos, os grupos poderiam representá-los tanto para as bolachas integrais 

quanto para as de aveia, ou seja: 

Para as bolachas integrais, a função de demanda de bolachas seria 

representada por: 

𝑞1 = 4(𝑝2 − 𝑝1), 

a função receita seria representada como: 

𝑅1(𝑝1, 𝑝2) = 4(𝑝2 − 𝑝1)𝑝1, 
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De maneira semelhante para as bolachas de aveia, a função de demanda 

de bolachas seria representada por: 𝑞2 = 36 + 4(𝑝1 − 2𝑝2), e a função receita 

poderia ser representada como: 𝑅2(𝑝1, 𝑝2) = [36 + 4(𝑝1 − 2𝑝2)]𝑝2. 

Esperamos que os grupos, por meio de tratamentos no registro algébrico 

(operações possíveis em equações e expressões algébricas), expressem de 

maneira algébrica a função lucro representada por: 

𝑙(𝑝1, 𝑝2) = 8𝑝1𝑝2 + 52𝑝2 − 4𝑝1
2 − 4𝑝1 − 8𝑝2

2 − 108. 

Poderiam tentar expressá-la de forma canônica, mas perceberiam que não 

é possível e que essa representação algébrica não é conhecida. Na sequência, 

supomos que os grupos, para terem uma apreensão perceptiva da função lucro, 

perceberiam a necessidade de representá-la graficamente. Para isso, realizariam a 

conversão do registro algébrico para o gráfico usando como meio o CAS 

Mathematica, podendo escrever, por exemplo, o comando:  

Plot3D[8𝑝1𝑝2 − 4𝑝1
2 − 8𝑝2

2 + 52𝑝2 − 4𝑝1 − 108, {𝑝1, 0,10}, {𝑝2, 0,10}, PlotRange

→ {0,50}, AxesLabel → {"p1", "p2", "l"} 

Assim, esperamos que, apoiados na situação anterior, os grupos 

percebessem que, para representar o gráfico no Mathematica da função lucro, era 

recomendável que o domínio da função estivesse perto do possível valor de 

máximo, porque o estudo dessa noção é local, além de considerar os dados do 

problema p1≥0, p2≥0. Supomos, também, que nesse registro gráfico identificassem 

uma das variáveis visuais, isto é, a posição da superfície traçada dentro de uma 

caixa definida pelos eixos coordenados. Nesse sentido, os grupos poderiam 

considerar o domínio da função lucro no intervalo [0,50], tendo assim uma 

apreensão perceptiva imediata do valor máximo, como mostra a Figura 66.  

Do mesmo modo, supomos que os grupos realizassem tratamentos no 

registro gráfico a partir de uma modificação de tipo ótico e posicional, identificando 

as variáveis visuais: relação dos pontos da superfície com respeito ao eixo z e à 

curvatura da superfície, o que lhes permitiria ter uma apreensão perceptiva do 

possível valor máximo da função lucro e do comportamento dessa superfície perto 

desse valor, respectivamente.  
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Na sequência, esperamos que os grupos, por meio de modificações 

mereológicas dentro do registro gráfico CAS_MATH, traçassem planos 

perpendiculares ao eixo l, por exemplo, os planos l=30 e l=35. Para isso, utilizaram 

o comando representado por: 

ContourPlot3D[{𝑗 == 30, 𝑗 == 35}, {𝑥, 2,8}, {𝑦, 2,8}, {𝑧, 0,50}, AxesLabel → {"X", "Y", "Z"}]. 

E, assim, pela apreensão perceptiva e operatória, identificariam outra 

variável visual, isto é, a posição da superfície em relação ao plano perpendicular 

ao eixo z, como é mostrado na Figura 68. 

Figura 68. Representação gráfica dos cortes horizontais da superfície 

 

Fonte: Construção da autora. 

Supomos, também, que os grupos, por meio de tratamentos no registro 

gráfico CAS_MATH, isto é, modificações de tipo ótico e posicional, descriminassem 

outra variável visual, variação do valor de z em relação aos valores de x e y da curva 

de interseção da superficie com o plano perpendicualr ao eixo z , o que permitiria, 

junto às variáveis visuais consideradas anteriormente, que conjecturassem e 

formulassem que no valor máximo a superfície está por baixo, completamente, do 

plano perpendicular ao eixo l, e que o valor máximo da superfície se localiza no 

ponto onde o plano perpendicular ao eixo l é tangente à superfície. 

Assim, esperamos que todos os grupos percebessem que isso não é 

suficiente para dar resposta à situação, podendo sentir a necessidade de voltar 

para o registro algébrico e mobilizar seus conhecimentos sobre a noção plano 

tangente à superfície, cuja representação algébrica é dada por: 

𝑧 = 𝑧0 + 𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0) 

e sobre a noção de plano perpendicular ao eixo z, cuja representação algébrica é 

expressada por 𝑧 = 𝑧0, em que 𝑧0 é o valor da função no ponto (𝑥0, 𝑦0), isto é 
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𝑓(𝑥0, 𝑦0) = 𝑧0. Portanto, supomos que no registro algébrico os grupos 

comparassem as duas representações algébricas dos planos, mencionados 

anteriormente, e formulassem que as derivadas parciais no ponto (x0, y0) são zero, 

sendo que, nesse ponto, o gráfico da função tem um plano tangente perpendicular 

ao eixo z, além de ser um ponto de máximo. 

Na sequência, os grupos poderiam, no registro algébrico, validar suas 

afirmações, isto é, encontrar as derivadas parciais da função lucro e igualá-las a 

zero, por meio de tratamentos algébricos. Visto que o tratamento no registro 

algébrico se dá pelas operações possíveis em equações e expressões algébricas, 

os grupos resolveriam um sistema de equações como resultado de igualar a zero 

as derivadas parciais e encontrar o ponto representado por (5.5,6), substituindo-o 

na equação do plano tangente, validando que esse plano, nesse ponto, é 

perpendicular ao eixo z, ou seja, z = 37. Desse modo, o aluno encontra o valor da 

função nesse ponto, isto é, l(5.5,6) = 37, dando assim resposta à situação-problema. 

Institucionalização local: Nessa situação, generalizamos os resultados a 

partir das produções dos grupos. A professora investigadora ordena, resume e 

organiza essas produções por meio da seguinte propriedade. 

Se f(x,y) tiver um valor de máximo local em um ponto (x0,y0) e se as 

derivadas parciais de primeira ordem lá existirem, então as derivadas 

parciais nesse ponto são zero. 

Análise a posteriori 

De maneira semelhante à situação anterior, todos os alunos trabalharam em 

grupos, trocaram ideais, reconheceram as variáveis didáticas declaradas na análise 

a priori e realizaram as ações, formulações e validações para solucionar a situação, 

como tínhamos pressuposto na análise a priori. 

A seguir, examinaremos com mais detalhe as ações de cada um dos grupos, 

visto que realizaram outras ações que não tínhamos pressuposto na análise a priori. 

O grupo 1, para ter uma apreensão perceptiva do valor máximo no registro 

gráfico CAS, discriminou-se a variável visual, posição da superfície em relação aos 
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eixos coordenados orientados positivamente, nesse registro gráfico, como mostra 

a Figura 69. 

Figura 69. Descriminação de uma variável visual específica. 

 

Fonte: Produção do grupo 1. 

Isso significa que começou a desenvolver processo de visualização para 

identificar o valor máximo da função lucro. 

O grupo 2, após modificações de tipo ótico no registro gráfico CAS, 

discriminou-se uma variável visual, a relação dos pontos da superfície com respeito 

ao eixo z, e, pela percepção perceptiva, representou-se graficamente um ponto. 

Fato que não tínhamos pressuposto na análise a priori.  

O grupo discriminou as variáveis visuais no registro gráfico CAS e as 

relacionou com uma terna de números (terna ordenada), a qual permitiu identificar 

um ponto no registro gráfico CAS; isto quer dizer que a percepção do grupo 2 foi 

icônica, conforme a Figura 70.  

Figura 70. Representação gráfica do valor máximo. 

 

Fonte: Produção do grupo 2. 
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O grupo 3, diferente do grupo 1 e do grupo 2, para identificar o valor máximo 

da função lucro no registro gráfico, discriminou a variável visual, posição da 

superfície traçada dentro de uma caixa definida pelos eixos coordenados, conforme 

mostra a Figura 71. Na sequência, pela apreensão perceptiva, representou-se 

graficamente alguns pontos, o que não tínhamos pressuposto na análise a priori.  

Figura 71. Gráfico de pontos na superfície. 

 

Fonte: Produção do grupo 3. 

Observamos que o grupo discriminou as variáveis visuais no registro gráfico, 

e as relacionou com uma terna de números (terna ordenada), a qual permite 

identificar um ponto no registro gráfico CAS_MATH, e isto quer dizer que a 

apreensão do grupo 3, analogamente ao grupo 2, foi icônica. 

O grupo 4, para identificar o valor máximo no registro gráfico, discriminou a 

variável visual, posição da superfície traçada em relação aos eixos coordenados 

orientados positivamente, nesse registro gráfico, como mostra a Figura 72, o que 

não tínhamos pressuposto na análise a priori. 

Figura 72. Posição da superfície em relação aos eixos coordenados. 

 

Fonte: Produção do grupo 4. 



134 

Constatamos que o grupo 4 começou a desenvolver processo de 

visualização para identificar o valor máximo da função lucro. 

O grupo 5, para identificar o valor máximo no registro gráfico CAS, diferente 

do grupo 1 e do grupo 4, escolheu não mostrar os cortes verticais (variáveis visuais 

do registro gráfico), como mostra a Figura 73, o que não tínhamos previsto na 

análise a priori. 

Figura 73. Registro gráfico CAS em que não se mostram os cortes verticais. 

 

Fonte: Produção do grupo 5. 

Isso significa que o grupo 5 começou a desenvolver processo de 

visualização para reconhecer o valor máximo da função lucro. Na situação de 

validação, o grupo 5, diferente dos outros grupos, representou algebricamente o 

plano tangente utilizando a equação normal do plano, conforme mostra a Figura 74, 

o que não havíamos pressuposto na análise a priori. 

Figura 74. Equação normal do plano tangente à superfície. 

 

Fonte: Produção do grupo 5.12 

____________ 

12 Então, por meio da equação do plano tangente temos: [...]. Mas o vetor normal ao plano tangente é igual a 

[...]. (Tradução nossa) 
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Até esse momento, todos os grupos tinham coordenado os registros da 

língua natural, algébrico e gráfico CAS. Este último permitiu que todos os grupos 

fizessem modificações de tipo ótico e posicional, identificassem e discriminassem 

as variáveis visuais próprias do registro gráfico CAS.  

Validar as formulações e terminar o processo de visualização do valor 

máximo, para dar solução à situação, foi uma tarefa difícil, porque os grupos não 

articularam todas essas modificações no gráfico, representado no Mathematica, 

para identificar o valor máximo, com a noção de derivadas parciais de primeira 

ordem estudadas em um teorema.  

Visto que todos os grupos não tiveram uma apreensão global na construção 

do conhecimento do valor máximo de uma função de duas variáveis, necessárias 

para terminar o processo de visualização e dar solução à situação, os professores 

investigadores fizeram perguntas gerais para ajudá-los a mobilizar seus 

conhecimentos prévios a fim de que pudessem solucionar a situação-problema, 

realizando a conversão do registro gráfico CAS para o registro algébrico. 

Portanto, afirmamos que o objetivo desta situação foi atingido, já que os 

grupos determinaram o valor máximo e o valor de máximo para uma função de duas 

variáveis reais, cuja representação algébrica não era conhecida. 

Sobre o processo de visualização na identificação do valor máximo de uma 

função de duas variáveis, o registro gráfico representado no Mathematica favoreceu 

seu desenvolvimento nos grupos, sem que as situações mobilizadas fossem de 

ação, formulação e validação. 

Logo, com apoio das formulações feitas pelos grupos, institucionalizamos 

localmente com uma propriedade, conforme citamos anteriormente. 
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Situação 0313 

Os bons resultados da economia brasileira nos últimos anos surtiram efeito 

positivo sobre o mercado imobiliário voltado para empreendimentos comerciais. 

Uma construtora trouxe para São Paulo um novo conceito de empreendimento 

comercial, de flexibilidade, conforto e modernidade. Pensando no conforto, 

projeta-se construir edifícios onde a perda de calor em relação à estrutura do 

edifício seja mínima. Para isso, a construtora requer que o edifício comercial 

tenha a seguinte característica: As paredes laterais direita e esquerda perdem 

calor a uma taxa de 10 unidades/m2 por dia, as paredes de frontal e posterior a 

uma taxa de 8 unidades/m2, o piso, a uma taxa de 1 unidade/m2 por dia e o teto, 

a uma taxa de 5 unidades/m2 por dia. O espaço que ocupa o edifício é 

exatamente de 3750 m3. Quais seriam as dimensões do edifício para minimizar 

a perda de calor? E qual seria essa perda? Justifique sua resposta. 

Análise a priori. 

Essa situação tem por objetivo levar o aluno a mobilizar os conhecimentos 

adquiridos na situação anterior para o estudo do mínimo local e do valor de mínimo 

local de uma função de duas variáveis mais geral do que as tratadas anteriormente. 

A situação possibilita a utilização de conhecimentos a respeito da noção perda de 

calor que já foi estudada na disciplina de Física no primeiro semestre, de plano 

tangente a uma superfície e de derivadas parciais em um ponto, também já 

estudada de acordo com a ementa da disciplina. 

Apresentamos, na sequência, o procedimento para construir a 

representação algébrica da função de duas variáveis reais: perda de calor. 

Segundo os dados do problema, devem-se reconhecer os objetos que representam 

as dimensões do edifício e o objeto que representa o espaço ocupado pelo edifício, 

o qual é fixo, por exemplo, 𝑥, 𝑦, 𝑧 e V, respectivamente. Pode-se também elaborar 

uma representação figural (opcional), conforme exemplo na Figura 77, para 

representar o edifício comercial e localizar os objetos representantes das 

dimensões. 

 

____________ 

13 Dados adaptados do livro Matemáticas para administración y economía. Haeussler, Ernest F. 

Pretince Hall, 2003, p. 777. 



137 

 
Figura 75. Uma representação figural do edifício comercial. 

 

Fonte: Construção da autora. 

A partir dessa figura, podemos reconhecer o objeto área das paredes laterais 

direita e esquerda representados pela função definida algebricamente por 

A(x,z)=2xz, o objeto área das paredes frontal e posterior representado pela função 

definida algebricamente como A(y,z)=2yz, e os objetos teto e piso representado pela 

função definida algebricamente por A(x,y)=2xy. Assim, o objeto espaço que ocupa 

o edifício comercial é representado pela função definida algebricamente como 

V(x,y,z)=xyz=3750.  

Logo, segundo os dados do problema, temos que a função perda total de 

calor depende das dimensões do edifício, a qual definimos algebricamente por 

𝑃(𝑥, 𝑦, 𝑧) =  10(2𝑥𝑧) + 8(2𝑦𝑧) + 𝑥𝑦 + 5𝑥𝑦, com 𝑥 > 0, 𝑦 > 0, 𝑧 > 0, porque a perda 

total de calor é a soma da perda de calor nas paredes laterais mais a perda de calor 

nas paredes frontal e posterior mais a perda de calor no teto e no piso. 

No tocante ao objeto volume do edifício comercial, podemos representar o 

objeto z em termos de x, y, isto é, 𝑧 =
3750

𝑥𝑦
, ou o objeto y em termos de x, z, ou seja, 

𝑦 =
3750

𝑥𝑧
,  ou o objeto x em termos de y, z, quer dizer, 𝑥 =

3750

𝑦𝑧
,  substituindo qualquer 

desses objetos na função perda total de calor, só para exemplificar, 𝑧 =
3750

𝑥𝑦
, 

teremos: 

𝑃(𝑥, 𝑦) = 20𝑥 (
3750

𝑥𝑦
) + 16𝑦 (

3750

𝑥𝑦
) + 6𝑥𝑦 

𝑃(𝑥, 𝑦) =
75000

𝑦
+

60000

𝑥
+ 6𝑥𝑦. 

Para resolver o problema proposto, isto é, determinar as dimensões do 

edifício a fim de minimizar a perda de calor e encontrar essa mínima perda de calor 

em relação à estrutura do edifício, apresentamos a seguinte estratégia de 

resolução. 
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Uma vez que a representação algébrica da função é desconhecida pelo 

aluno, apoiar-nos-emos no registro gráfico. Assim, supomos que o aluno busque o 

registro gráfico para entender o comportamento da função, embora somente esse 

registro não seja suficiente para resolver o problema. 

Representamos o gráfico no software Mathematica e graficamente a função 

perda de calor, cuja representação algébrica é: 

𝑃(𝑥, 𝑦) =
75000

𝑦
+

60000

𝑥
+ 6𝑥𝑦 

com domínio, por exemplo, (𝑥, 𝑦) ∈ [10,30] × [15,35], porque, baseados na 

situação anterior, o estudo do valor de mínimo é local, isto é, o domínio da função 

está nas proximidades do valor de mínimo. Para isso, escrevemos o comando 

Plot3D[
75000

𝑦
+

60000

𝑥
+ 6𝑥𝑦, {𝑥, 10,30}, {𝑦, 15,35}, AxesLabel → {"X", "Y", "Z"}] e 

obtemos o registro gráfico CAS_MATH mostrado na Figura 76. 

Figura 76. Registro gráfico CAS da função perda de calor p(x,y). 

 
Fonte: Construção da autora. 

No registro gráfico CAS_MATH, baseado na situação anterior, utilizamos o 

mesmo procedimento de solução, traçando planos perpendiculares ao eixo p que 

interceptem a superfície por meio do comando, conforme mostra a Figura 77.  

ContourPlot3D[{𝑝 == 9500, 𝑝 == 9600}, {x, 10,30}, {y, 13,35}, {𝑝, 0,50}, AxesLabel →

{"X", "𝑌", "p"}]. 
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Figura 77. Registro gráfico CAS das intercepções dos planos com a superfície. 

 

Fonte: Construção da autora. 

A partir da Figura 77, inferimos, da mesma forma que na situação anterior, 

que no valor mínimo da função perda de calor o plano perpendicular ao eixo p é 

tangente à superfície. A seguir, apoiados na institucionalização local realizada na 

situação-problema anterior, voltamos ao registro algébrico em que encontramos as 

derivadas parciais e as igualamos a zero, para assim encontrar o valor de mínimo. 

Ou seja, encontramos 𝑃𝑥 =
−60000

𝑥2 + 6𝑦, 𝑃𝑦 =
−75000

𝑦2 + 6𝑥, igualando essas 

derivadas parciais a zero, obtemos as equações 
−60000

𝑥2 + 6𝑦 = 0 e 
−75000

𝑦2 + 6𝑥 = 0. 

Para resolvê-las, substituímos 𝑦 =
10000

𝑥2   da primeira equação na segunda, 

resultando: 0 =
−75000

(
10000

𝑥2 )
2 + 6𝑥 =

3𝑥4

20000
− 6𝑥 = 𝑥 (

3𝑥3

4000
− 6) 

Portanto, existem duas raízes reais positivas: 𝑥 = 0 ou 𝑥 = 20, a seguir 

substituímos o valor de y na expressão 𝑦 =
10000

𝑥2  para obter o ponto (20,25), pois  

𝑥 > 0. O valor de mínimo é o ponto de coordenadas (20,25). Substituindo este valor 

na função perda de calor obtemos a mínima perda de calor, Ou seja, z = 9 000. 

A estratégia de solução anteriormente citada será semelhante ao substituir 

a variável x definida por 𝑥 =
3750

𝑦𝑧
, na função perda de calor, representada 

algebricamente por: 𝑃(𝑦, 𝑧) = 20𝑧 (
3750

𝑦𝑧
) + 16𝑦𝑧 + 6𝑦 (

3750

𝑦𝑧
) 

𝑃(𝑦, 𝑧) =
75000

𝑦
+

22500

𝑧
+ 16𝑦𝑧 



140 

cuja representação gráfica é mostrada na Figura 78, em que, somente para 

exemplificar, o domínio da função é [15,35]x[0,15]. Para isso, usamos o comando 

Plot3D[
75000

𝑦
+

22500

𝑧
+ 16𝑦𝑧, {𝑦, 15,35}, {𝑧, 0,15}, AxesLabel → {"Y", "Z", "p"}] 

Figura 78. Registro gráfico CAS da função p(y,z) 

 

Fonte: Construção da autora. 

Podemos observar que, no tocante ao gráfico mostrado na Figura 78, 

embora a função perda de calor esteja definida em termos de y,z, a imagem dessa 

função está no eixo vertical. Assim também, ao substituir a variável x definida por 

𝑦 =
3750

𝑥𝑧
 na função perda de calor, essa função estaria representada 

algebricamente como: 𝑃(𝑥, 𝑧) = 20𝑥𝑧 +
60000

𝑥
+

22500

𝑧
 cuja representação gráfica é 

mostrada na Figura 79, em que, por exemplo, o domínio da função é [10,30]x[0,15]. 

Para isso, usamos o comando Plot3D[20𝑥𝑧 +
60000

𝑥
+

22500

𝑧
, {𝑥, 10,30}, {𝑧, 0,15}, AxesLabel → {"x", "z", "p"}]. 

Figura 79. Registro gráfico CAS da função p(x,z) 

 

Fonte: Construção da autora. 
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Igualmente, observamos que em relação ao gráfico mostrado na Figura 79, 

mesmo que a função perda de calor esteja definida em termos de x,z, a imagem 

dessa função está no eixo vertical. 

As variáveis didáticas são as seguintes:  

 A função área: da parede lateral direita e esquerda, da parede frontal e 

posterior, o piso e o teto; 

 O espaço que o edifício comercial ocupa; 

 A função perda total de calor, cuja representação algébrica é uma função 

de duas variáveis qualquer. 

Esperamos que os grupos, após terem lido o enunciado do problema, 

realizassem a conversão do registro em língua natural para uma representação 

figural do edifício comercial, apenas para ilustrar, semelhante à Figura 75, e 

reconhecer os objetos que representariam as dimensões do edifício. A seguir, os 

grupos poderiam realizar a conversão do registro em língua natural para o registro 

algébrico, isto é, representar algebricamente a função área total do edifício 

comercial como 𝐴(𝑥, 𝑦, 𝑧) = 2𝑥𝑧 + 2𝑦𝑧 + 2𝑥𝑦, em que, por exemplo, a área da 

parede lateral direita e esquerda poderia ser representada por 𝐴(𝑥, 𝑧) = 2𝑥𝑧, a área 

da parede frontal e posterior representada por 𝐴(𝑥, 𝑦) = 2𝑥𝑦 e a área do teto e piso 

representada por 𝐴(𝑥, 𝑦) = 2𝑥𝑦. 

Na sequência, esperamos que os grupos reconhecessem também o objeto 

espaço, que ocupa o edifício, representando-o algebricamente por: 𝑉(𝑥, 𝑦, 𝑧) =

𝑥𝑦𝑧 = 3750. A partir dos dados do problema, o aluno reconheceria a função perda 

de calor do edifício por metro quadrado e a representaria algebricamente como: 

𝑃(𝑥, 𝑦, 𝑧) = 10(2𝑥𝑧) + 8(2𝑦𝑧) + 𝑥𝑦 + 5𝑥𝑦. 

Dado que essa função não pode ser representada em ℝ4, esperamos que 

por meio de tratamentos nesse registro, isto é, dado que 𝑥𝑦𝑧 = 3750, os grupos 

pudessem, por exemplo, representar a variável z em termos de x, y e substituí-la na 

expressão algébrica da função, dessa maneira representariam algebricamente a 

função perda de calor por 𝑃(𝑥, 𝑦) =
75000

𝑦
+

60000

𝑥
+ 6𝑥𝑦. 
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Como a representação algébrica da função perda de calor é desconhecida 

pelos grupos, esperamos que, para terem uma apreensão perceptiva da função 

perda de calor, percebessem a necessidade de representá-la graficamente. Para 

isso, realizariam a conversão do registro algébrico para o registro gráfico 

representado no Mathematica, conforme mostra a Figura 80, podendo utilizar, por 

exemplo, o comando Plot3D[
75000

𝑦
+

60000

𝑥
+ 6𝑥𝑦, {𝑥, 0,40}, {𝑦, 0,50}, AxesLabel →

{"X", "Y", "p"}]. 

Figura 80. Representação gráfica da função perda de calor. 

 

Fonte: Construção da autora. 

Por meio de tratamentos dentro do registro gráfico CAS_MATH, isto é, 

movimentar o gráfico, ficar mais perto do possível ponto de mínimo (modificação 

ótica) e mudar os pontos de observação (modificação posicional), esperamos que 

os grupos identificassem as variáveis visuais: relação dos pontos da superfície com 

respeito ao eixo z e a curvatura da superfície, o que lhes permitiria ter uma 

apreensão perceptiva do possível valor mínimo da função perda de calor. Na 

sequência, no mesmo registro gráfico, os grupos poderiam realizar modificações 

de tipo mereológica (cortes horizontais z=k), próximos ao possível valor mínimo e, 

assim, identificariam outra variável visual, ou seja, a posição da superfície em 

relação ao plano perpendicular ao eixo z e conjecturar a possível mínima perda de 

calor, conforme a Figura 81. 
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Figura 81. Representação gráfica dos cortes horizontais à superfície 

 

Fonte: Construção da autora. 

Esperamos que os grupos, por meio de modificações de tipo ótico e 

posicional, discriminassem outra variável visual, variação do valor de z em relação 

aos valores de x e y da curva de interseção da superfície com o plano perpendicular 

ao eixo z, e também formulassem que no valor mínimo o plano tangente à 

superfície, é perpendicular ao eixo z.  

Apoiados na institucionalização local da segunda situação, esperamos que 

os grupos mobilizassem seus conhecimentos até agora trabalhados para validar 

suas formulações. Para isso, no registro algébrico, os grupos realizariam 

tratamentos (dado pelas operações possíveis em equações e expressões 

algébricas) para encontrarem o valor de mínimo, isto é, encontrarem as derivadas 

parciais de primeira ordem da função perda de calor e igualá-las a zero. Em 

seguida, o aluno formularia que no ponto (20,25) a função tem valor mínimo. A 

seguir, os grupos substituiriam o ponto (20,25) na função perda de calor, isto é, 

P(20,25)=9000, encontrando assim o valor mínimo da função e a resposta à 

situação–problema. 

Institucionalização local: Nessa situação, generalizamos os resultados a 

partir das produções e formulações dos grupos. A professora investigadora 

organiza a situação didática com as propriedades para finalmente institucionalizar 

as noções a que está associada, por meio da propriedade: 
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Se 𝒇(𝒙, 𝒚) tiver um valor mínimo local no ponto (𝒙𝟎, 𝒚𝟎) e se as 

derivadas parciais de primeira ordem lá existirem, então as derivadas 

parciais nesse ponto são zero. 

E por meio das observações: 

Um ponto (𝒙𝟎, 𝒚𝟎) de uma função 𝒇(𝒙, 𝒚) em que tanto 𝒇𝒙(𝒙𝟎, 𝒚𝟎) como 

𝒇𝒚(𝒙𝟎, 𝒚𝟎) sejam zero, chama-se ponto crítico de f. 

 

Os valores máximos e mínimos locais de uma função f chamam-se 

valores extremos locais da função f. 

Análise a posteriori 

De maneira semelhante à situação anterior, os grupos leram o enunciado do 

problema, trocaram ideias, reconheceram e discriminaram as variáveis didáticas 

declaradas na análise a priori, as ações, formulações e validações para solucionar 

a situação, assim como tínhamos pressuposto na análise a priori.  

Na sequência, analisaremos com mais detalhe as ações de alguns dos 

grupos, uma vez que realizaram outras ações que não havíamos pressuposto na 

análise a priori. 

O grupo 1 não tinha certeza do significado da expressão “perda de calor a 

uma taxa de ... unidades/m2”, visto que, conforme a Figura 82, o grupo estava 

cometendo erros no momento de representar a medida da área das paredes do 

edifício comercial e a função volume, de tal forma que não conseguia realizar a 

conversão do registro da língua natural para o registro algébrico. 

Figura 82. Representações dos dados da situação. 

 

Fonte: Produção do grupo 1. 
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Ap\os ter lido a situação didática mais duas vezes, perceberam que a perda 

de calor do edifício comercial era medida em unidades por metro quadrado e era 

usada para calcular a medida da área. Logo, o grupo reconheceu que as variáveis 

utilizadas não representavam a medida da área. A seguir, reescreveram-nas para 

representar sua função volume, conforme mostra a Figura 83. 

Figura 83. Representação das variáveis e da função volume. 

 

Fonte: Produção do grupo 114. 

O grupo, após releitura, conseguiu realizar a conversão do registro da língua 

natural para o registro algébrico, como tínhamos previsto na análise a priori. 

Evidenciamos que o grupo 1, no registro gráfico representado no 

Mathematica, discriminou a variável visual, posição da superfície traçada em 

relação aos eixos coordenados orientados positivamente, sem mostrar os cortes 

nos planos verticais x e y nesse registro cuja função representa perda de calor, 

conforme a Figura 84, o que não previmos na análise a priori. 

Figura 84. Discriminação de variáveis visuais. 

 
Fonte: Produção do grupo 1. 

____________ 

14 Lateral direito = XY; posterior frontal YZ; piso=XZ; teto=XZ 
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Isso significa que o grupo 1 começou a desenvolver o processo de 

visualização ao construir a noção de valor mínimo de uma função de duas variáveis 

reais. 

O grupo 2 realizou a conversão do registro algébrico para o gráfico 

representado no Mathematica, da função perda de calor, conforme mostra a Figura 

85, o que não havíamos pressuposto na análise a priori. 

Figura 85. Registro gráfico CAS da função perda de calor. 

 

Fonte: Produção do grupo 2. 

Após as modificações óticas e posicionais nesse registro, o grupo não 

conseguiu ter uma apreensão perceptiva do valor mínimo. Na sequência, o grupo 

2 leu o problema novamente, realizou, outra vez, a conversão de registro em língua 

natural para o registro algébrico. Depois da análise no registro algébrico, o grupo 2 

percebeu que a função perda de calor não estava definida no ponto (0,0), ou seja, 

a função não era contínua no ponto (0,0), de tal forma que decidiu mudar o domínio 

da função, conforme mostra a Figura 86. 

Figura 86. Gráfico da função no domínio [0,35] x [0,30] 

 

Fonte: Produção do grupo 2. 
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Isso significa que para o grupo 2, ainda, não é fácil compreender a noção de 

função contínua e, assim, a falta de conhecimento das regras de correspondência 

semântica entre o registro de representação em língua natural e o registro da 

expressão algébrica. 

O grupo 5 discriminou a variável visual, posição da superfície traçada em 

relação aos eixos coordenados orientados positivamente, sem mostrar os cortes 

nos planos verticais x e y no gráfico representado no Mathematica. Além disso, 

realizou as modificações mereológicas, optando também, para mostrá-las na tela 

do computador, não apresentar os cortes nos planos verticais, tanto na 

representação do plano, quanto na da função perda de calor, conforme mostra a 

Figura 87, o que não tínhamos previsto na análise a priori.  

Figura 87. Discriminação de variável visual e modificações mereológicas. 

 

Fonte: Produção do grupo 5. 

Isso significa que o grupo 5 começou a desenvolver o processo de 

visualização para construir a noção de valor mínimo de uma função de duas 

variáveis. 

Diferente da situação anterior, nesta não foi difícil articular, para os grupos, 

por meio das modificações: os tratamentos dentro do gráfico, representado no 

software Mathematica, e as variáveis visuais desse registro, com a noção de 

derivadas parciais de primeira ordem, ao se construir a noção de valor mínimo de 

uma função de duas variáveis. Assim, todos os grupos mobilizaram os 

conhecimentos adquiridos até o momento por meio das situações estudadas para 

culminar o processo de visualização na identificação do valor mínimo de uma 

função de duas variáveis reais.  
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Com efeito, o gráfico representado no software Mathematica favoreceu o 

processo de visualização, sendo que as situações mobilizadas foram de ação, 

formulação e validação. Dessa forma, o objetivo dessa situação foi atingido, isto é, 

todos os grupos determinaram as dimensões do edifício para minimizar a perda de 

calor e a mínima perda de calor. 

Logo, com apoio das formulações feitas pelos grupos, institucionalizamos 

localmente com uma propriedade e duas observações conforme citamos 

anteriormente. 

Situação 04 

Na atualidade, observamos muitas construções com desenhos 

arquitetônicos modernos, por exemplo: o edifício Copam15, em São Paulo, cuja 

arquitetura em forma de “S” é um símbolo da cidade, e a Capela Lomas de 

Cuernavaca16, no México, mostrada na figura a seguir. 

                

Figuras: (1) Capela em construção    (2) Capela terminada 

A dupla curvatura dessa capela é ótima para suportar as tensões, pressão 

e flexão da construção, que tem resistência de carga e custo de construção 

barato. Considerando situações anteriores, o que você observa neste desenho 

arquitetônico particular? Justifique sua resposta. 

Análise a priori 

Essa situação tem por objetivo que o aluno faça conjecturas sobre o fato de 

que nem todo ponto crítico é um máximo ou um mínimo local levando-o a 

reconhecer, na superfície mostrada na figura, a representação gráfica de uma 

____________ 

15 Disponível em: <http://arqnobrasil.wordpress.com/240/>. Acesso em: 14 out. 2013. 

16 Disponível em: < http://www.di-conexiones.com>. Acesso em: 14 out. 2013. 

http://arqnobrasil.wordpress.com/240/
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função de duas variáveis conhecida, chamada paraboloide hiperbólico. 

Acreditamos que essa situação possa provocar um desequilíbrio cognitivo, pois os 

alunos acreditam que a anulação das derivadas parciais em um ponto de uma 

função de duas variáveis sempre indica a presença de valor máximo ou valor 

mínimo. Na sequência, apresentaremos a resolução do problema. 

A representação figural mostrada é similar a um paraboloide hiperbólico, cuja 

representação algébrica é dada por 𝑧 =
𝑦2

𝑏2 −
𝑥2

𝑎2. E se quisermos trasladar k 

unidades no eixo z, a representação algébrica seria 𝑧 =
𝑦2

𝑏2
−

𝑥2

𝑎2
+ 𝑘. Os valores de 

b, a e k são constantes, e dependem da escolha do aluno no momento de fazer a 

representação gráfica e algébrica. 

Outras representações algébricas a considerar podem ser 𝑥 =
𝑦2

𝑏2 −
𝑧2

𝑎2 + 𝑘, 

𝑥 =
𝑧2

𝑏2 −
𝑦2

𝑎2 + 𝑘, 𝑧 =
𝑥2

𝑏2 −
𝑦2

𝑎2 + 𝑘, 𝑦 =
𝑧2

𝑏2 −
𝑥2

𝑎2 + 𝑘 ou 𝑦 =
𝑥2

𝑏2 −
𝑧2

𝑎2 + 𝑘, cujos gráficos 

representados no Mathematica podem ser visualizados na Figura 88, com os dados 

valores de a, b, k para representá-las graficamente. Para exemplificar, usaremos 

representações, em que 𝑥 ∈ [−5,3], 𝑦 ∈ [−5,5], e a imagem 𝑧 ∈ [0,50], em que os 

comandos usados, respectivamente, são: 

Plot3D[𝑥^2 − 2𝑦^2 + 5, {𝑥, −5,3}, {𝑦, −5,5}, PlotRange → {0,50}, Axes →

True, AxesLabel → {"X", "Y", "Z"}] ; 

Plot3D[𝑦^2 − 2𝑧^2 + 5, {𝑦, −5,3}, {𝑧, −5,5}, PlotRange → {0,50}, Axes →

True, AxesLabel → {"Y", "Z", "X"}] ; 

Plot3D[𝑧^2 − 2𝑦^2 + 5, {𝑦, −5,5}, {𝑧, −5,3}, PlotRange → {0,50}, Axes →

True, AxesLabel → {“Y”,”Z”,”X”}]; 

Plot3D[𝑥^2 − 2𝑧^2 + 5, {𝑥, −5,5}, {𝑧, −5,3}, PlotRange → {0,50}, Axes →

True, AxesLabel → {"X", "Z", "Y"}] , 
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Figura 88. Registros gráficos CAS_MATH do paraboloide hiperbólico. 

 

𝑧 = 𝑥2 − 2𝑦2 + 5 

 

𝑥 = 𝑦2 − 2𝑧2 + 5 

 

𝑥 = 𝑧2 − 2𝑦2 + 5 

 

𝑦 = 𝑥2 − 2𝑧2 + 5 

Fonte: Construção da autora. 

 

Outras representações algébricas a considerar poderiam ser definidas por: 

𝑥−ℎ

𝑐
=

(𝑦−𝑘)2

𝑏2 −
(𝑧−𝑙)2

𝑎2 , 
𝑥−ℎ

𝑐
=

(𝑧−𝑙)2

𝑏2 −
(𝑦−𝑘)2

𝑎2 , 
𝑧−𝑙

𝑐
=

(𝑥−ℎ)2

𝑏2 −
(𝑦−𝑘)2

𝑎2 , 
𝑧−𝑙

𝑐
=

(𝑦−𝑘)2

𝑏2 −
(𝑥−ℎ)2

𝑎2 , 

𝑦−𝑘

𝑐
=

(𝑦−𝑘)2

𝑏2 −
(𝑥−ℎ)2

𝑎2  e 
𝑦−𝑘

𝑐
=

(𝑥−ℎ)2

𝑏2 −
(𝑦−𝑘)2

𝑎2 , alguns dos registros gráficos 

CAS_MATH são mostrados na Figura 89, com os dados valores de a, b, c, h, k para 

representá-las graficamente, em que 𝑥 ∈ [−2,3], 𝑦 ∈ [0,6] e a imagem, 𝑧 ∈ [0,15]. 

Para isso, usamos os comandos respectivos: 

Plot3D[(𝑥 − 1)^2 − 2(𝑦 − 3)^2 + 5, {𝑥, −2,3}, {𝑦, 0,6}, PlotRange →

{0,15}, AxesLabel → {𝑋, 𝑌, 𝑍}]; 

Plot3D[(𝑦 − 3)^2 − 2(𝑧 − 5)^2 + 1, {𝑦, 0,5}, {𝑧, 2,7}, PlotRange → {0,15}, AxesLabel →

{𝑌, 𝑍, 𝑋}]; 

Plot3D[(𝑥 − 1)^2 − 2(𝑧 − 5)^2 + 3, {𝑥, −2,3}, {𝑧, 2,8}, PlotRange →

{0,15}, AxesLabel → {𝑋, 𝑍, 𝑌}]. 
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Figura 89. Outros registros gráficos CAS_MATH do paraboloide hiperbólico. 

 

𝑧 = (𝑥 − 1)2 − 2(𝑦 − 3)2 + 5 

 

𝑥 = (𝑦 − 3)2 − 2(𝑧 − 5)2 + 1 

 

𝑦 = (𝑥 − 1)2 − 2(𝑧 − 5)2 + 3 

Fonte: Construção da autora. 

Como se pode observar, o comportamento da superfície no ponto crítico é o 

mesmo, seja esta: dilatada, trasladada, ou o eixo do paraboloide seja a variável x, 

y ou z. O que nos interessa aqui é o comportamento da função nas proximidades 

de um ponto crítico. 

Podemos observar em relação às representações gráficas estudadas nas 

situações anteriores que o ponto crítico tem uma característica particular. Para 

determinar essa característica vemos o caminho gráfico. O aluno, no gráfico 

representado no software Mathematica, analisará o comportamento da função nas 

proximidades de um ponto crítico e inferirá sua natureza, embora só esse gráfico 

não seja suficiente para resolver o problema. 

Por exemplo, poderíamos considerar a função representada por 𝑧 = 𝑦2 −

2𝑥2 + 5 cujo registro gráfico CAS_MATH é similar à figura mostrada na situação 04, 

conforme a Figura 90, com domínio (𝑥, 𝑦) ∈ [−5,5] × [−5,3] e a imagem 𝑧 ∈ [0,40]. 

Escrevemos o comando s = Plot3D[𝑦^2 − 2𝑥^2 + 5, {𝑥, −5,5}, {𝑦, −5,3}, PlotRange →

{0,40}, Mesh → None, AxesLabel → {"X", "Y", "Z"}] representa no Mathematica o 

paraboloide hiperbólico. 

Figura 90. Registro gráfico CAS da função representada por z=y2-2x2+5. 

 

Fonte: Construção da autora. 
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Apoiados nas institucionalizações locais anteriormente citadas, encontramos 

no registro algébrico as derivadas parciais e as igualamos a zero, isto é, 𝑓𝑥 = −4𝑥 =

0 e 𝑓𝑦 = 2𝑦 = 0. Resolvendo as equações, encontramos que o único ponto crítico 

é o ponto (0,0). Para estudar a natureza desse ponto crítico no registro gráfico e 

apoiados nas situações anteriores, representamos graficamente o plano tangente 

à superfície no ponto (0,0) paralelo ao plano xy representado algebricamente por 

z=5, conforme Figura 91. 

Figura 91. Registro gráfico CAS_MATH do corte no plano z=5. 

 

Fonte: Construção da autora. 

Observamos que no ponto crítico (0,0), o plano tangente atravessa a 

superfície, permitindo-nos formular aqui que a função não tem nem máximo nem 

mínimo. Então, já que as primeiras derivadas são zero não é condição suficiente 

para determinar se uma função de duas variáveis tem um valor extremo em um 

ponto crítico. Para isso, precisamos das segundas derivadas parciais. 

A variável didática levada em conta durante a escolha e construção da 

situação proposta é referente à imagem de uma Capela. 

Esperamos que os grupos a partir das representações figurais apresentadas 

no problema reconhecessem e formulassem que essas representações são 

semelhantes à representação gráfica de uma função de duas variáveis, chamada 

paraboloide hiperbólico. Apoiados nas situações desenvolvidas anteriormente, os 

grupos poderiam representar algebricamente essa função de duas variáveis, 

apenas para exemplificar, 
𝑧−𝑙

𝑐
=

(𝑦−𝑘)2

𝑎2 −
(𝑥−ℎ)2

𝑏2  e dar valores numéricos às constantes 

𝑙, 𝑘, ℎ, 𝑐, 𝑎, 𝑏.  

Assim, supomos que os grupos realizem a conversão do registro algébrico 

para o gráfico representado no Mathematica. Ademais, esperamos que os grupos 
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coordenassem os registros algébricos (formados por eles mesmos) com os 

registros gráficos CAS_MATH, até conseguirem a representação gráfica 

semelhante à figura mostrada no problema. Para isso, poderiam levar em 

consideração as variáveis significantes do registro algébrico da função de duas 

variáveis (um termo linear; dois termos quadráticos com sinais opostos) e as 

variáveis visuais do registro gráfico (o eixo da representação gráfica da função de 

duas variáveis e os traços nos planos xy, yz e xz). 

A seguir, supomos que os grupos, baseados na institucionalização local feita 

na situação-problema anterior, por meio de tratamentos (operações possíveis em 

equações e expressões algébricas) no registro algébrico, indiquem o ponto crítico 

da função e duas variáveis. Para saber sua natureza, poderiam ir para o registro 

gráfico e por meio de modificações mereológicas (cortes horizontais z=k), 

modificações ótica e posicional, discriminar uma variável visual (posição da 

superfície em relação ao plano perpendicular ao eixo z) e formular que no ponto 

crítico o plano é tangente, mas não está nem para cima nem para baixo da 

superfície, isto é, o plano atravessa a superfície. Por exemplo, ver a Figura 92, em 

que consideramos o registro gráfico CAS_MATH da função representada por 𝑧 =

𝑦2 − 2𝑥2 + 5 e suas modificações mereológicas, ótica e posicional. Assim, pela 

apreensão operatória, poderíamos conjecturar sobre a natureza do ponto crítico. 

Figura 92. Modificações mereológicas, óticas e posicionais no registro gráfico CAS. 

 
Modificação mereológica. 

 
Modificação ótica 

 
Modificação posicional 

Fonte: Construção da autora. 
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A seguir, os grupos poderiam também formular que a função, cujo registro 

gráfico CAS_MATH simula uma Capela, não tem nem valor máximo nem valor 

mínimo, e que as derivadas parciais de primeira ordem não são suficientes para 

conhecer a natureza de valores máximos e mínimos. Esperamos que formulassem 

a necessidade de usar as segundas derivadas parciais. 

Institucionalização local: Nessa situação, generalizamos os resultados a 

partir das produções dos grupos. A professora pesquisadora organiza essas 

produções por meio da observação. 

Uma função diferenciável f(x,y) tem um ponto de sela em um ponto crítico 

(x0,y0), se em f existem pontos (x,y,) em que a função nesses pontos é maior ou 

igual ao valor da função no ponto crítico, e os pontos (x,y), em que o valor da 

função nesses pontos é menor ou igual ao valor da função no ponto crítico. 

Análise a posteriori 

De maneira semelhante à situação anterior, os alunos leram o enunciado do 

problema, trabalharam em grupos, trocaram ideias, reconheceram e discriminaram 

as variáveis didáticas enunciadas na análise a priori, realizando as ações, 

formulações e validações para solucionar a situação, como tínhamos pressuposto 

na análise a priori. Na sequência, analisaremos com mais detalhe as ações de cada 

um dos grupos, pois realizaram outras ações que não havíamos pressuposto na 

análise a priori. 

O grupo 1 mostrou, pela apreensão perceptiva, na representação figural do 

enunciado do problema, os possíveis valores máximos e mínimos, conforme a 

Figura 93. Este grupo começou a desenhar um sistema de coordenadas na 

representação figural, o que significa um sinal de apreensão operatória, mas ainda 

com uma percepção icônica do valor máximo e mínimo, fato que não tínhamos 

pressuposto na análise a priori. 

O grupo 1, antes de realizar a conversão do registro algébrico para o gráfico 

representado no Mathematica, da função representada por 𝑧 = 𝑥2 − 𝑦2, começou 

a desenhar as variáveis visuais (cortes nos planos verticais), o que é um sinal de 

apreensão operatória. A seguir, o grupo 1 realizou a conversão do registro algébrico 

para o registro gráfico, representado em lápis e papel, conforme a Figura 94. Isso 
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significa que o grupo 1 coordenou esses dois registros, ou seja, relacionou as 

variáveis significantes do registro algébrico da função de duas variáveis (um termo 

linear; dois termos quadráticos com sinais opostos) com as variáveis visuais do 

registro gráfico (o eixo da representação gráfica da função de duas variáveis; os 

traços nos planos yz e xz). 

Figura 93. Representação icônica do valor máximo e mínimo. 

 
Fonte: Produção do grupo1. 

Ademais, para o caso de funções de uma variável, especificamente, da 

função de segundo grau, o grupo 1 não articulou os registros algébrico e gráfico, 

conforme mostra a Figura 94, não explicitando a correspondência entre o 

coeficiente, 𝑘, da expressão algébrica, 𝑧 = 𝑎𝑥2 + 𝑘, e a variável visual (intersecção 

com o eixo das ordenadas).  

Figura 94. Conversão do registro algébrico para o registro gráfico. 

 

Fonte: Produção do grupo 1. 
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Isso significa que, para o grupo 1, ainda não é fácil articular esses dois 

registros de representação de uma função de uma variável real. No caso da função 

de duas variáveis, evidenciamos que o grupo 1 começou a desenvolver o processo 

de visualização na identificação do ponto de sela. 

Comprovamos que o grupo 1, baseado em sua representação icônica do 

valor mínimo, para validar sua conjectura, realizou tratamentos (operações 

possíveis em equações e expressões algébricas), no registro algébrico, a fim de 

encontrar o ponto crítico (-3,0) e o valor mínimo, conforme mostra a Figura 95. 

Figura 95. Tratamento no registro algébrico para encontrar o valor mínimo. 

 

Fonte: Produção do grupo 1. 

É necessário ressaltar que o grupo 1 não tem a clareza de como representar 

algebricamente o valor mínimo e o valor de mínimo. Embora tivéssemos 

institucionalizado as noções de ponto crítico, valor máximo e mínimo nas situações-

problema anteriores, este grupo ainda não compreendeu o significado de valor 

mínimo e valor de mínimo. 

Já no registro gráfico CAS, o grupo 1 representou o ponto crítico e sua 

imagem. Pela apreensão operatória, ou seja, por meio de modificações 

mereológica (cortes horizontais z =k) e posicional dentro do mesmo registro, 

discriminou uma variável visual (posição da superfície traçada em relação aos eixos 

coordenados orientados positivamente). Notamos que o grupo 1 não mostrou os 

cortes nos planos xz e yz no registro gráfico CAS, conforme mostra a Figura 96, o 

que não havíamos pressuposto na análise a priori. 



157 

 
Figura 96. Modificações mereológica e posicional no registro gráfico CAS. 

  

Isso significa que o grupo 1 começou a desenvolver o processo de 

visualização para identificar o ponto de sela de uma função de duas variáveis. 

O grupo2, diferente do grupo 1, não desenhou nenhum sistema de 

coordenadas na representação figural, conforme mostra a Figura 97. 

Figura 97. Representação icônica do valor máximo e mínimo. 

 

Fonte: Produção do grupo 2. 

O grupo 2 ainda tem uma percepção icônica do valor máximo e mínimo, fato 

que não tínhamos pressuposto na análise a priori. 

Comprovamos que o grupo 2, baseado em sua representação icônica do 

valor mínimo, para validar sua conjectura, realizou tratamentos (operações 

possíveis em equações e expressões algébricas), no registro algébrico, a fim de 

encontrar o ponto crítico (0,0) e valor mínimo, conforme mostra a Figura 98, o que 

não tínhamos previsto na análise a priori. 
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Figura 98. Tratamento no registro algébrico para achar o valor mínimo. 

 

Fonte: Produção do grupo 2.17 

É necessário ressaltar que o grupo 2, de maneira análoga ao grupo 1, não 

tem a clareza de como representar algebricamente o valor mínimo e o valor de 

mínimo. Embora tivéssemos institucionalizado as noções de ponto crítico, valor 

máximo e mínimo nas situações anteriores, este grupo ainda não compreendeu o 

significado de valor mínimo, valor de mínimo, valor máximo e valor de máximo. 

Já no gráfico representado no Mathematica, o grupo 2 discriminou uma 

variável visual, posição da superfície traçada em relação aos eixos coordenados 

orientados positivamente, e realizou a modificação mereológica, mas essas duas 

ações foram realizadas sem mostrar os cortes nos planos xz e yz, no registro gráfico 

CAS, conforme Figura 99, o que não tínhamos pressuposto na análise a priori. 

Isso significa que o grupo 2 começou a desenvolver o processo de 

visualização na identificação do ponto de sela. 

 

 

 

 

 

____________ 

17 Baseado na seguinte equação: [...] Para o ponto mínimo, observamos que, se existisse a derivada, 

concluiríamos que as derivadas parciais são iguais a zero [...]. O ponto (0,0,0) seria máximo e mínimo. 
(Tradução nossa). 
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Figura 99. Modificação mereológica e posicional do registro gráfico CAS. 

 
Fonte: Produção do grupo 2. 

O grupo 3, diferente dos grupos anteriores, mostrou os pontos mínimos e os 

pontos de mínimo no registro gráfico da função de duas variáveis em um ambiente 

de lápis e papel, e, por meio de modificações mereológicas no mesmo registro, 

desenhou algumas variáveis visuais (cortes nos planos yz e xz), conforme Figura 

100. 

Figura 100. Modificações mereológica no registro gráfico. 

 

Fonte: Produção do grupo 3. 

Isso significa que o grupo 3 deu um sinal de desenvolvimento da apreensão 

operatória dentro da representação figural. No entanto, a representação dos valores 

máximo e mínimo ainda é icônica. 

O grupo 3, para validar suas conjecturas, voltou para o registro algébrico e 

por meio de tratamentos nesse registro, isto é, operações possíveis em equações 

e expressões algébricas, formulou que, nesse ponto crítico, existe o valor máximo 
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e mínimo em simultâneo, conforme Figura 101, o que não tínhamos previsto na 

análise a priori. 

Ressaltamos que o grupo 3, de maneira análoga aos grupos anteriormente 

mencionados, não tem a clareza de como representar algebricamente o valor 

mínimo, o valor máximo, o valor de mínimo e o valor de máximo. Embora 

tivéssemos institucionalizado as noções de ponto crítico, valor máximo e mínimo 

nas situações anteriores, o grupo 3, de maneira semelhante ao grupo 2, ainda não 

compreendeu o significado de valor mínimo, valor de mínimo, valor máximo e valor 

de máximo.  

Figura 101. Tratamento no registro gráfico para caracterizar o ponto crítico. 

 
Fonte: Produção do grupo 3.18 

O grupo 3 representou em um gráfico do Mathematica, o ponto crítico e sua 

imagem, conforme Figura 102, situação que não tínhamos pressuposto na análise 

a priori. 

Isso significa que o grupo 3 realizou a conversão da representação algébrica 

do ponto crítico e sua imagem para o registro gráfico CAS_MATH, apenas para 

ilustrar. 

 

____________ 

18 Se existirem pontos máximos e mínimos locais e as derivadas parciais de primeira ordem, as derivadas 

parciais nesses pontos são iguais a zero. [...] Então, o ponto {0,0,0}, confome mencionado anteriormente, 
seria o ponto máximo e mínimo. (Tradução nossa) 
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Figura 102. Registro gráfico CAS do ponto crítico e sua imagem. 

 
Fonte: produção do grupo 3. 

O grupo 4, de maneira semelhante ao grupo 2, pela apreensão perceptiva 

mostrou o valor máximo e mínimo da função de duas variáveis reais na 

representação figural apresentada no problema, conforme Figura 103. 

Figura 103. Representação icônica do valor máximo e mínimo. 

 

Fonte: Produção do grupo 4. 

Isso significa que o grupo 4, como os grupos anteriores, ainda tem uma 

percepção icônica do valor máximo e mínimo, o que não tínhamos pressuposto na 

análise a priori. 

O grupo 4, para validar suas conjecturas, voltou para o registro algébrico, e 

por meio de tratamentos nesse registro, isto é, de operações possíveis em 
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equações e expressões algébricas, formulou que, nesse ponto crítico, existe o valor 

máximo e mínimo em simultâneo, conforme Figura 104, o que não tínhamos 

previsto na análise a priori. 

Figura 104. Formulação sobre a natureza do ponto crítico. 

 

Fonte: Produção do grupo 4.19 

Ressaltamos que o grupo 4, de maneira análoga aos grupos anteriormente 

mencionados, não tem a clareza de como representar algebricamente o valor 

mínimo, o valor máximo, o valor de mínimo e o valor de máximo. Embora 

tivéssemos institucionalizado as noções de ponto crítico, valor máximo e mínimo 

nas situações anteriores, o grupo 4 ainda não compreendeu o significado de valor 

mínimo, valor de mínimo, valor máximo e valor de máximo. 

Já no registro gráfico CAS_MATH, o grupo 4, como o grupo 3, representou 

o ponto crítico e sua imagem, conforme Figura 105, fato que não tínhamos 

pressuposto na análise a priori. 

Isso significa que o grupo 4 realizou a conversão da representação algébrica 

do ponto crítico e sua imagem para o registro gráfico CAS_MATH, apenas para 

ilustrar. 

____________ 

19 Existem pontos máximos e mínimos relativos e existem as derivadas parciais de primeira ordem, sendo que 

as derivadas parciais nesses pontos são iguais a zero. [...]. Então o ponto {0,0,0}, de acordo com que foi dito 
anteriormente, seria um ponto máximo e mínimo. (Tradução nossa) 
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Figura 105. Registro gráfico CAS do ponto crítico e sua imagem. 

 

Fonte: produção do grupo 4. 

O grupo 5 mostrou, pela apreensão perceptiva, o valor máximo e mínimo da 

função de duas variáveis na representação figural apresentada no problema, 

conforme Figura 106. 

Figura 106. Representação icônica do valor máximo e mínimo. 

 

Fonte: Produção do grupo 5. 

Isso significa que a representação dos valores máximos e mínimos ainda é 

icônica. 

Até o momento, evidenciamos que todos os grupos, ao validarem suas 

formulações em relação ao possível valor máximo ou mínimo, mobilizaram seus 

conhecimentos adquiridos nas institucionalizações locais previamente 

apresentadas, articulando a representação desses valores com a noção de 

derivadas parciais de primeira ordem.  
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A seguir, para dar solução à situação e responder à pergunta, notamos que 

foi uma etapa difícil para todos os grupos. Não tinham clareza em relação ao que 

perceberam, pela apreensão perceptiva, representando-a de maneira icônica, no 

que diz respeito aos valores máximo e mínimo, com seus resultados encontrados, 

após a validação.  

Com efeito, esse problema provocou nos grupos um desequilíbrio cognitivo, 

porque acreditaram que a anulação das derivadas parciais, em um ponto de uma 

função de duas variáveis, indica sempre a presença de valor máximo ou valor 

mínimo. Tendo em vista que foi difícil responder o problema, os professores 

investigadores decidiram que o grupo 5 deveria comunicar aos seus colegas sua 

formulação sobre a natureza do ponto crítico, pois foi o único grupo que formulou 

conforme suposto na análise a priori. Após troca de ideias com os outros grupos 

em relação ao ponto crítico, todos concordaram em formular que nesse ponto crítico 

não existe um valor máximo, nem um valor mínimo.  

Notamos que levou mais tempo do que previsto na etapa da concepção da 

situação didática para conseguir que os grupos sentissem a necessidade da noção 

das segundas derivadas parciais para caracterizar os pontos críticos.  

Assim, o objetivo dessa situação foi atingido. Os grupos fizeram conjecturas 

em relação ao fato de que nem todo ponto crítico é um extremo local, ou seja, a 

existência das primeiras derivadas parciais nesse ponto não é suficiente para 

afirmar que a função de duas variáveis diferenciáveis tenha um extremo local, por 

isso, foram necessárias as segundas derivadas parciais.  

No tocante ao processo de visualização na identificação do ponto de sela de 

uma função de duas variáveis reais, acreditamos que o gráfico representado no 

software Mathematica favoreceu o desenvolvimento das apreensões perceptiva, 

discursiva e operatória, por meio de modificações ótica, posicional e mereológica 

dentro desse registro, e, assim, discriminaram-se as variáveis visuais para 

identificar o ponto de sela de uma função de duas variáveis reais. 

Em seguida, com apoio das formulações feitas pelos grupos, 

institucionalizamos localmente com uma observação, conforme citamos 

anteriormente. 
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Portanto, ao considerar as situações de ação, formulação, validação e a 

institucionalização local, vimos a necessidade de fazer um encerramento desses 

conhecimentos de uma maneira formal. Apresentamos, a seguir, as definições e 

teoremas necessários para o estudo dos valores máximo e mínimo locais de uma 

função de duas variáveis reais por meio de uma institucionalização global. 

Institucionalização Global 

Definições. Diz-se que uma função 𝑓 de duas variáveis tem:  

1. Um máximo local em um ponto (𝑥0, 𝑦0) se há um círculo centrado em 

(𝑥0, 𝑦0), de modo que  𝑓(𝑥0, 𝑦0) ≥  𝑓(𝑥, 𝑦) para todos os pontos (𝑥, 𝑦) do domínio 

de 𝑓 que estão dentro de um círculo. 

2. Um mínimo local em um ponto (𝑥0, 𝑦0) se há um círculo centrado em 

(𝑥0, 𝑦0), de modo que  𝑓(𝑥0, 𝑦0) ≤  𝑓(𝑥, 𝑦)para todos os pontos (𝑥, 𝑦) do domínio de 

𝑓 que estão dentro de um círculo. 

Teorema. Se 𝑓 tiver um valor de máximo ou mínimo local em um ponto 

(𝑥0, 𝑦0) e se as derivadas parciais de primeira ordem existirem nesse ponto, então 

𝑓𝑥(𝑥0, 𝑦0) = 0 e 𝑓𝑦(𝑥0, 𝑦0) = 0. 

Definição. Um ponto (𝑥0, 𝑦0) no domínio de uma função 𝑓(𝑥, 𝑦) é 

denominado ponto crítico da função se 𝑓𝑥(𝑥0, 𝑦0) = 0 e 𝑓𝑦(𝑥0, 𝑦0) = 0 ou se uma ou 

ambas as derivadas parciais não existirem em (𝑥0, 𝑦0). 

Definição. Uma função diferenciável 𝑓(𝑥, 𝑦) tem um ponto de sela em um 

ponto crítico (𝑥0, 𝑦0) se em todo círculo centrado em (𝑥0, 𝑦0) existirem ponto do 

domínio (x,y) em que 𝑓(𝑥, 𝑦) > 𝑓(𝑥0, 𝑦0) e ponto do domínio (x,y) em que 𝑓(𝑥, 𝑦) <

𝑓(𝑥0, 𝑦0). 

Teorema. Seja 𝑓 uma função de duas variáveis com derivadas parciais de 

segunda ordem contínuas em algum círculo centrado em um ponto crítico (𝑥0, 𝑦0) 

e seja 𝐷 = 𝐷(𝑥0, 𝑦0) = 𝑓𝑥𝑥(𝑥0, 𝑦0)𝑓𝑦𝑦(𝑥0, 𝑦0) − [𝑓𝑥𝑦(𝑥0, 𝑦0)]
2
 o Hessiano de f no ponto 

(𝑥0, 𝑦0), 

a) f (𝑥0, 𝑦0) tem um mínimo local em (𝑥0, 𝑦0) se 𝑓𝑥𝑥(𝑥0, 𝑦0) > 0 e 𝐷 > 0 
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b)  f (𝑥0, 𝑦0) tem um máximo local em (𝑥0, 𝑦0) se 𝑓𝑥𝑥(𝑥0, 𝑦0) < 0 e 𝐷 > 0 

c) f (𝑥0, 𝑦0) não é máximo local nem mínimo local em (𝑥0, 𝑦0) se 𝐷 < 0. 

d) O teste é inconclusivo em (𝑥0, 𝑦0) se 𝐷 = 0. 

Situação de avaliação 

Considere a função 𝑓:ℝ2 ⟶ ℝ representada por 𝑓(𝑥, 𝑦) = 𝑥3 + 3𝑥𝑦2 − 15𝑥 −

12𝑦 + 6. Estude os pontos críticos dessa função para determinar os valores 

máximos e mínimos locais. Justifique sua resposta. 

O intuito desta situação foi levar o aluno a mobilizar os conhecimentos 

construídos a respeito de máximos e mínimo locais de funções de duas variáveis 

e, disponivilizá-lo na resolução dessa situação. 

Resolução do problema 

A função definida algebricamente por 𝑓(𝑥, 𝑦) = 𝑥3 + 3𝑥𝑦2 − 15𝑥 − 12𝑦 + 6 é 

definida e diferenciável para todo (𝑥, 𝑦) ∈ ℝ2. Para achar os valores extremos dessa 

função vemos o caminho algébrico. 

Achamos as derivadas parciais de primeira ordem e as igualamos a zero 

para achar os pontos críticos, isto é, 

𝑓𝑥 = 3𝑥2 + 3𝑦2 − 15 = 0 , 𝑓𝑦 = 6𝑥𝑦 − 12 = 0 

Resolvemos as equações e obtemos os pontos críticos: (1,2), (-1,-2), (2,1),  (-

2,-1). O hessiano é dado pela expressão 𝐷 = (6𝑥)(6𝑥) − (6𝑦)2, então calculamos 

seu valor em cada ponto crítico: 

𝐷(1,2) = 36 − 144 < 0 , então f(1,2) é um ponto de sela. 

𝐷(−1,−2) = 36 − 144 < 0, então f(-1,-2) é um ponto de sela. 

𝐷(2,1) = 144 − 36 > 0 e 𝑓𝑥𝑥(2,1) = 12 > 0, então f(2,1)=-22 é um mínimo 

local. 

𝐷(−2,−1) = 144 − 36 > 0 e 𝑓𝑥𝑥(−2,−1) = −12 < 0, então f(-2,-1)=34 é um 

máximo local. 
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A variável didática levada em conta durante a escolha da situação de 

availação é a representação algébrica da função de duas variáveis reais. 

Esperamos que os grupos mobilizassem todos os seus conhecimentos 

apreendidos na construção dos valores máximos e mínimos locais de funções de 

duas variáveis. Assim, por meio de tratamentos no registro algébrico, das 

operações possíveis em equações e expressões algébricas, ao utilizar os teoremas 

e as definições mencionadas na institucionalização global, os grupos poderiam 

resolver a atividade proposta.  

Análise a posteriori. 

Analisaremos com mais detalhe as ações dos grupos 1, 2, 4 e 5, pois 

realizaram outras ações que não tínhamos previsto na análise a priori. 

O grupo 1 realizou a conversão do registro algébrico para o registro gráfico 

CAS da função de duas variáveis reais. No registro gráfico, há um tratamento, a 

partir das modificações ótica e posicional, na ação de ter uma apreensão perceptiva 

imediata da representação da função de duas variáveis, conforme Figura 107. 

Observamos que, dentro do gráfico representado no software Mathematica, 

o grupo 1 discriminou uma variável visual, ou seja, posição da superfície traçada 

em relação aos eixos coordenados orientados positivamente, mesmo que não 

tenha mostrado, nesse registro, os cortes nos planos xz e yz. Isso significa que o 

grupo 1 realizou a conversão para o registro gráfico CAS, apenas para ilustrar o 

gráfico da função de duas variáveis reais, mostrando sinais de apreensão 

operatória para ter uma apreensão perceptiva dessa função nos pontos críticos, 

fato que não tínhamos previsto na análise a priori. 

Figura 107. Registro gráfico CAS da função representada por z=x3+3x2-15x-12y+6. 

 

Fonte: Produção do grupo 1. 
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Observamos, conforme mostra a Figura 108, que o grupo 1 ainda manifesta 

erros na representação algébrica dos valores máximo (mínimo) e dos valores de 

máximo (mínimo) de uma função de duas variáveis reais, o que não tínhamos 

previsto na análise a priori. 

Figura 108. Representação gráfica do valor mínimo e máximo. 

 

Fonte: Produção do grupo 1. 

O grupo 1 ainda não tem clareza de domínio e imagem de uma função de 

duas variáveis, porque não diferencia, por exemplo, o valor mínimo do valor de 

mínimo. 

O grupo 2, de maneira semelhante ao grupo 1, ainda manifesta erros na 

representação algébrica dos valores máximo (mínimo) e dos valores de máximo 

(mínimo) de uma função de duas variáveis reais, conforme mostra a Figura 109, o 

que não tínhamos previsto na análise a priori. 

Figura 109. Erros na representação algébrica dos valores máximo, mínimo. 

 

Fonte: Produção do grupo 2. 
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Isso significa que o grupo 2 também não tem clareza de domínio e imagem 

de uma função de duas variáveis reais, dado que não diferencia, por exemplo, o 

valor máximo do valor de máximo. 

O grupo 4, de maneira semelhante ao grupo 1, realizou a conversão do 

registro algébrico para o gráfico, representado no software Mathematica, da função 

de duas variáveis. No registro gráfico, há um tratamento, a partir das modificações 

ótica e posicional, na ação de ter uma apreensão perceptiva da representação da 

função de duas variáveis reais, conforme Figura 110. 

Figura 110. Registro gráfico CAS_MATH da função representada por z=x3+3x2-15x-12y+6. 

 

Fonte: Produção do grupo 4. 

Observamos que, dentro do registro gráfico CAS_MATH, o grupo 4 não 

mostrou os cortes nos planos xz e yz. Isso significa que o grupo 1 realizou a 

conversão para o gráfico representado no software Mathematica apenas para 

ilustrar o gráfico da função de duas variáveis reais, diferente do grupo 1 – situação 

não prevista na análise a priori. 

O grupo 5, de maneira semelhante aos grupos anteriores, também 

manifesta erros na representação algébrica dos valores máximo (mínimo) e dos 

valores de máximo (mínimo) de uma função de duas variáveis reais, conforme 

Figura 111, o que não tínhamos previsto na análise a priori. 

Figura 111. Erros na concepção do valor máximo e mínimo. 

 

Fonte: Produção do grupo 5. 
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O grupo 5, também, não tem clareza de domínio e imagem de uma função 

de duas variáveis, já que não diferencia, por exemplo, o valor mínimo do valor de 

mínimo. 

Observamos que, embora tivéssemos institucionalizado e os alunos 

tivessem construído a noção de valor máximo e mínimo de funções de duas 

variáveis reais, o erro na representação algébrica do valor máximo (mínimo) e do 

valor de máximo (de mínimo) ainda permanece, ou seja, a falta de clareza na 

determinação e representação do domínio e imagem de uma função de duas 

variáveis na própria construção cognitiva dos alunos não desapareceu. Dessa 

forma, afirmamos que esses conhecimentos tornaram-se obstáculo, segundo 

Brousseau (1976), e, como sabemos, o próprio conhecimento de função é um 

obstáculo epistemológico.20 

Finalmente, acreditamos que a elaboração de um conjunto de situações 

proporcionou aos alunos de engenheira construir as noções de valores máximos e 

mínimos locais de funções de duas variáveis reais. Assim, o estudo da visualização 

dos gráficos representados no software Mathematica, mediante a teoria dos 

Registros de Representação Semiótica de Duval, mostrou ser um meio para a 

compreensão dessa noção matemática.  

 

  

____________ 

20 Segundo Brousseau (1976), os obstáculos epistemológicos são aqueles referentes à construção do 

conhecimento ao longo do decorrer da História e da própria construção cognitiva do aluno. O conhecimento 
de função é um exemplo de obstáculo epistemológico. 
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CONSIDERAÇÕES FINAIS 

 

A disciplina matemática, que faz parte da grade curricular dos cursos de 

Engenharia, é o Cálculo diferencial e integral de várias variáveis. Já na Faculdade 

de Engenharia de Alimentos na Universidade Nacional do Callao, no Peru, onde 

demos aulas, é chamada de Cálculo III.  

Segundo minha experiência, como professora desse curso, os alunos 

apresentam problemas quanto à aprendizagem dos conteúdos envolvidos nessa 

disciplina. Quanto à revisão bibliográfica, observam-se duas características no 

processo de ensino de matemática na Engenharia: as dificuldades de compreensão 

de conceitos matemáticos, especialmente aqueles relacionados ao Cálculo 

diferencial e integral de funções de duas variáveis reais, e a falta de situações 

relacionadas ao campo de atividade profissional do futuro engenheiro nas aulas de 

Matemática. 

A partir dessa revisão bibliográfica, percebe-se que há poucas pesquisas 

relacionadas ao ensino do Cálculo III, especificamente na área da Engenharia, que 

tratam da visualização como meio de compreender esses conhecimentos 

matemáticos, principalmente quanto à visualização no espaço. E foi justamente 

essa falta de pesquisas sobre a utilização do CAS, especificamente do 

Mathematica, no ensino e aprendizagem de conteúdos de Cálculo III, que motivou 

a realização deste estudo. 

Acreditamos que os alunos, por meio das situações propostas na tese, 

apropriaram-se das noções de valores máximo e mínimo locais de funções de duas 

variáveis reais, a partir de seus conhecimentos prévios. É o caso das noções de 

superfícies quadráticas, das derivadas parciais e dos planos tangentes, pois suas 

ações, formulações e validações evidenciaram a mobilização desses 
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conhecimentos para construir seus próprios novos conhecimentos, relacionados 

aos valores máximos e mínimos de funções de duas variáveis reais na parte 

experimental da pesquisa.  

O uso do CAS Mathematica facilitou a ocorrência das apreensões 

perceptiva, discursiva e operatória do gráfico representado no Mathematica na 

resolução dessas situações, isto é, os alunos desenvolveram a visualização no 

gráfico representado nesse software para identificar os valores máximo e mínimo 

de funções de duas variáveis reais, apoiando-se nela para compreender essa 

noção matemática. Assim, o estudo da visualização no Cálculo em duas variáveis 

reais, por intermédio da teoria dos Registros de Representação Semiótica de Duval, 

mostrou ser um meio para a compreensão dos valores máximo e mínimos locais 

de funções de duas variáveis. 

A presente tese teve como objetivo analisar o processo de visualização 

durante a aprendizagem das noções de valores máximos e mínimos locais de 

funções de duas variáveis reais dos alunos de engenharia. Portanto, faremos 

nossas considerações finais sobre a fundamentação teórica e metodológica 

utilizada, sobre a parte experimental, os principais resultados e as novas 

perspectivas de estudo. 

Fundamentação teórica e metodológica 

Entendemos que a Teoria das Situações Didáticas (Brousseau, 1998) foi 

pertinente ao nosso estudo por acreditarmos que, embora os alunos de Engenharia 

não estejam acostumados a trabalhar com atividades e/ou situações que articulem 

os temas matemáticos com os não matemáticos, as situações propostas levaram-

nos a mobilizar seus conhecimentos para tomar decisões e estudar suas razões na 

construção dos valores máximos e mínimos locais de funções de duas variáveis. 

Organizamos as situações didáticas com base em um problema que, embora 

fosse real, não era comum nos livros didáticos. Em termos de conteúdo, as 

situações referem-se ao estudo de valores máximos e mínimos locais de funções 

de duas variáveis reais. A resolução das situações envolveu os conhecimentos 

prévios dos alunos, tais como: funções vetoriais de variável real, superfícies 
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quadráticas, funções de duas variáveis, domínio, imagem, derivadas parciais e 

planos tangentes.  

As situações foram apresentadas a partir do registro da língua natural e do 

registro figural, como a situação 04, por exemplo. Para a solução dessas situações 

ocorreram conversões para o registro algébrico e posteriormente para o registro 

gráfico, e vice-versa. Nos registros gráficos houve tratamentos a partir das 

modificações ótica, posicional e mereológica na ação de observar a relação entre 

as superfícies e os planos perpendiculares ao eixo z.  

Nos registros algébricos, os tratamentos se deram pelas operações 

possíveis com as derivadas parciais e na solução de sistemas de equações de duas 

variáveis. Além disso, as situações apresentaram uma questão aberta cuja 

resposta se deu por caminhos próprios dos alunos. 

Para que os alunos compreendessem e construíssem efetivamente seus 

conhecimentos de valores máximos e mínimos locais de funções de duas variáveis 

foram imprescindíveis as conversões entre registros e seus respectivos 

tratamentos, e a coordenação de esses registros de representação semiótica. 

Justamente por isso, a teoria dos Registros de Representação Semiótica de Duval 

(1995) possibilitou-nos maneiras de atenuar os efeitos de uma aprendizagem 

baseada no algorítmico, oferecendo-nos subsídios para compreender como os 

alunos visualizam, segundo Duval (1999), um gráfico de uma função de duas 

variáveis para identificar seus valores máximos e mínimos. Considera-se também, 

que o estudo do registro gráfico no sistema cartesiano ℝ3 tenha facilitado o 

reconhecimento das diferentes apreensões dos alunos na interação com o CAS 

Mathematica. 

Por outro lado, utilizamos como metodologia uma Engenharia Didática de 

Artigue (1988) para orientar tanto nossas experiências em sala de aula, já que visa 

um estudo de processos de aprendizagem de certo saber matemático, quanto para 

estudar nossos resultados após a exploração dos dados recolhidos. Assim, ao 

longo da tese, desenvolvemos as quatro fases dessa metodologia.  

Apresentamos, então, um olhar para a história, que mostra como foram 

construídos os conhecimentos matemáticos relacionados ao Cálculo em várias 
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variáveis reais. Percebemos que o estudo matemático dos valores máximos e 

mínimos locais de funções de duas variáveis reais é o mesmo estudo feito por 

Lagrange (1759), pois os coeficientes presentes vêm a ser as derivadas parciais de 

primeira e segunda ordem.  

Assim, observamos que a construção dos valores máximos e mínimos locais 

de funções de duas ou mais variáveis, está centrada no registro em língua natural 

e registro algébrico, sobressaindo-se o tratamento no registro algébrico. Porém, 

não existe uma articulação entre esses registros, nem a atividade de conversão 

entre registros de representação semiótica, nem a variedade de representações 

semióticas, que são condições necessárias para a compreensão dos valores 

máximos e mínimos locais de funções de duas variáveis. 

Essas limitações não favorecem o desenvolvimento da visualização na 

compreensão desses valores, pois a visualização requer a leitura dos gráficos 

cartesianos que depende da articulação entre o registro gráfico e o algébrico, sendo 

necessário compreender os tratamentos no registro gráfico e os diferentes tipos de 

apreensões de um gráfico. 

Na análise a priori das situações didáticas, delineamos as variáveis 

microdidáticas, as possíveis ações, formulações, validações dos alunos e, em 

seguida, as institucionalizações locais depois de finalizada cada situação, assim 

como a institucionalização global. Na análise a posteriori, no entanto, validamos ou 

não nossas hipóteses levantadas na análise a priori. 

Principais resultados 

Os alunos envolveram-se com o problema proposto pelas situações. 

Podemos observar e analisar de maneira detalhada suas ações e formulações 

quando interagiram com a situação. Na situação de ação, os alunos utilizaram para 

a resolução do problema proposto seus conhecimentos prévios anteriormente 

mencionados.  

Na primeira situação, os grupos 2 e 3 realizaram a conversão do registro 

algébrico para o registro gráfico. O grupo 2 efetuou a conversão no ambiente lápis 

e papel, usando os tratamentos no registro gráfico, a partir das modificações 

posicional e mereológica, para mostrar o valor máximo da função. Diferentemente 
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do grupo 3, que realizou a conversão para o registro gráfico CAS, o grupo 2 

representou graficamente o valor máximo da função e, a partir da apreensão 

perceptiva, constatou que esse ponto era o valor máximo da função. Na ação de 

formulação, os alunos mobilizaram a noção de superfícies quadráticas para a 

resolução do problema. 

Nas segunda e terceira situações, os alunos, por meio de modificações 

mereológicas dentro do gráfico representado no software Mathematica, traçaram 

planos perpendiculares ao eixo z, interceptando-os com a superfície até atingir o 

valor máximo e mínimo da função de duas variáveis. Na situação de formulação, 

mobilizaram a noção de plano tangente para a resolução do problema. 

Verificamos também que nas segunda e terceira situações os alunos tiveram 

dificuldade no momento de vincular as noções de plano perpendicular ao eixo z e 

de plano tangente com suas respectivas definições matemáticas, particularmente a 

noção das derivadas parciais.  Por isso, apontamos que a ação de validação e a 

culminação do processo de visualização, por parte dos alunos, não foram fáceis. 

Com o apoio do CAS Mathematica, essas situações provocaram o 

tratamento no registro gráfico no sistema cartesiano ℝ3 (gráfico representado no 

software Mathematica), a partir das modificações ótica, posicional, mereológica, 

articulando a apreensão perceptiva, a apreensão operatória com a apreensão 

discursiva, relacionando-as com os conhecimentos matemáticos de plano 

perpendicular ao eixo z e plano tangente. 

Após a validação das formulações dos alunos na conclusão de cada 

situação, institucionalizamos de maneira local, ou seja, a partir de suas produções, 

ordenamos, resumimos e organizamos essas produções por meio de observações 

e propriedades, vinculando os resultados obtidos em diferentes momentos do 

desenvolvimento da situação didática, a fim de estabelecer relações entre as 

produções dos alunos e o saber matemático, por exemplo, as noções de valor 

máximo local, valor mínimo local, ponto crítico e a condição necessária para a 

existência desses valores. 

Por outro lado, na quarta situação, provocamos um desequilíbrio cognitivo 

nos alunos referente à noção de valor máximo e mínimo de uma função de duas 
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variáveis, o que propulsionou a busca de um novo saber: o uso das segundas 

derivadas parciais. Após as formulações feitas pelos alunos, institucionalizamos 

localmente apresentando suas produções em relação à noção de ponto de sela.  

Assim, essa situação provocou o tratamento no registro gráfico CAS a partir 

das operações de tipo ótico, posicional, mereológica, articulando também a 

apreensão perceptiva, a apreensão operatória com a apreensão discursiva, e 

relacionando-os aos conhecimentos matemáticos de plano perpendicular ao eixo z, 

às derivadas parciais e à condição necessária para a existência dos valores 

máximos e mínimos. 

Na procura desse novo saber, fomos levados a institucionalizar de forma 

global, vinculando as institucionalizações locais em diferentes momentos do 

desenvolvimento de todas as situações didáticas, estabelecendo as relações 

dessas institucionalizações locais e o saber matemático por meio da formalização 

e generalização, ou seja, apresentando as definições e teoremas relacionados à 

condição suficiente para a existência dos valores máximos e mínimos de uma 

função de duas variáveis. 

Observamos as ações dos alunos, ao utilizarem o registro gráfico CAS, na 

procura de relações entre unidades significativas de representação do objeto com 

a intenção de identificar propriedades específicas de interesse em cada situação. 

Nesses casos, estimulamos a visualização, a qual não é explorada pelos livros 

didáticos que consultamos.  

Neste sentido, o CAS Mathematica permitiu aos alunos explorar os gráficos 

de funções de duas variáveis reais de maneira dinâmica. Esse registro gráfico CAS 

facilitou a apreensão operatória dos gráficos no sistema cartesiano ℝ3, isto é, sua 

modificação ótica, visto que, no momento de identificar os valores máximo, mínimo 

e ponto de sela, observaram as relações entre a superfície e os planos 

perpendiculares ao eixo z e variaram a localização dessas superfícies em relação 

aos seus eixos coordenados, identificando e discriminando suas variáveis visuais. 

O registro gráfico CAS facilitou também a modificação posicional e mereológica no 

momento de identificar os valores máximo, mínimo e ponto de sela, por meio do 

qual os alunos mudaram os pontos de observação, traçaram planos 

perpendiculares ao eixo z, giraram a superfície e trasladaram-na. 
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Verificamos que o CAS Mathematica contribuiu para a aprendizagem de 

Matemática III, uma vez que o aluno pode ver, manipular, conjecturar e visualizar 

as representações gráficas de funções definidas algebricamente, sobretudo se 

essas representações algébricas não são reconhecidas pelo aluno. 

Afirmamos que os alunos não apresentaram problemas em usar os 

comandos do CAS Mathematica, necessários para representar os gráficos em 

software. 

Esta pesquisa revelou que o erro apresentado pelos alunos, ao construírem 

a noção de máximos e mínimos locais de uma função de duas variáveis reais, como 

o erro na representação algébrica do valor máximo (mínimo) e do valor de máximo 

(de mínimo), é decorrente da falta de clareza na determinação e representação do 

domínio e imagem de uma função de duas variáveis reais. 

Constatamos pela análise das situações que levamos os alunos a transitar 

pelos diversos registros de representação: língua natural, tabular, algébrico e 

gráfico. Neste último efetuar tratamentos (modificações) que permitiram a 

ocorrência das apreensões do registro gráfico, além da realização da coordenação 

de registros de representação semiótica e a articulação entre o registro gráfico e o 

algébrico. 

Perspectivas futuras 

Em relação aos resultados, pensamos em outras pesquisas que aprofundem 

os estudos dos valores máximos e mínimos locais de funções de duas variáveis, 

especialmente, o estudo dos Multiplicadores de Lagrange com o CAS Mathematica 

(ou com outros CAS), articulando ainda mais os ambientes informáticos e de lápis 

e papel, com situações que levem os alunos a fazer conjecturas e validar as 

propriedades dos Multiplicadores de Lagrange. 

Além disso, o estudo dos valores máximos e mínimos locais de funções de 

duas variáveis merece um estudo mais detalhado daquele que conseguimos 

realizar neste trabalho e um estudo mais aprofundado das apreensões do registro 

gráfico de funções de duas variáveis e suas possíveis articulações. 
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Do mesmo modo, consideramos que são necessárias outras pesquisas 

sobre funções de duas variáveis como: geometria analítica no cálculo, funções 

vetoriais, campos vetoriais, integrais de linha, integrais de superfície, baseadas na 

visualização de Duval, dos registros gráficos e na iteração com outros ambientes 

CAS. 
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Apêndice A - A Sequência de Ensino 

Situación 01 

Una empresa de celulares Smartphone pone a la venta para el sector 

adolescente durante seis meses, un nuevo modelo de alta tecnología y 

desempeño en dos ciudades del Perú, Cuzco y Piura. Además, la empresa para 

facilitar su estudio de mercado considera necesario que el precio esté 

determinado linealmente por la cantidad demandada en este periodo de tiempo. 

De esta forma, en Cuzco si el precio es de S/.300, la demanda es de 700 

Smartphone; si el precio es de S/.500, la demanda es de 500 Smartphone y si el 

precio es de S/.1000, ningún equipo es vendido. En Piura, si el precio es de 

S/.300, la demanda es de 540 Smartphone; si el precio es de S/.500, la demanda 

es de 340 Smartphone y si el precio es de S/.840, no se vende ningún equipo. El 

costo fijo de fabricación de los Smartphone es de 60 soles y el costo variable es 

de cuarenta veces la cantidad vendida en las dos ciudades. ¿Cuántos 

Smartphone deben ser vendidos en cada ciudad para obtener la mayor utilidad, 

y cuál es el valor de esta utilidad? 
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Situación 02 

La permanente necesidad de atender la demanda de productos variados 

y saludables a todo tipo de consumidores, llevó a una empresa a elaborar galletas 

naturales; para esto lanzó al mercado dos tipos de galletas: la galleta integral y 

la galleta de avena, cuya presentación es en bolsas de 24 unidades. Los costos 

totales de producción son de 2 y 3 soles por bolsa, respectivamente. La demanda 

(en miles de bolsas) de galletas integrales que pueden venderse cada semana 

es cuatro veces la diferencia del precio del segundo producto con relación al 

primero y la demanda (en miles de bolsas) de galletas de avena es cuatro veces 

la diferencia del precio del primer producto con relación al doble del segundo; 

pero la preferencia de los consumidores por esta galleta, incrementa su demanda 

siempre en 36 miles de bolsas. ¿Cuál será la mayor utilidad que obtiene la 

empresa y cuáles serían los precios de venta de cada tipo de galleta? Justifique 

su respuesta 
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Situación 03 

Los buenos resultados de la economía peruana en los últimos años 

produjeron un efecto positivo sobre el mercado inmobiliario dirigido a empresas 

comerciales. Una constructora trajo a Lima un nuevo concepto de empresa 

comercial basada en la flexibilidad, confort y modernidad. Pensando en el confort, 

se proyecta construir edificios donde la pérdida de calor en relación a la 

estructura del edificio sea mínima. Para eso, la constructora requiere que el 

edificio tenga la siguiente característica: las paredes laterales derecha e 

izquierda pierden calor a una tasa de 10 unidades/m2 por día, las paredes frontal 

y posterior a una tasa de 8 unidades/m2 por día, el piso a una tasa de 1 unidad/m2 

por día y el cielo raso a una tasa de 5 unidades/m2 por día. El espacio que ocupa 

el edificio es exactamente de 3750 m3. ¿Cuáles deberían las dimensiones del 

edificio que minimizan la pérdida de calor y cual sería esa pérdida? Justique su 

respuesta. 
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Situación 04 

En la actualidad observamos construcciones con diseños arquitectónicos 

modernos, por ejemplo: El edificio Copan en São Paulo, su arquitectura en forma 

de “S” se constituye en un símbolo de esa ciudad; la Capilla de Lomas de 

Cuernavaca en México, mostrada en la figura de abajo, entre otros. 

         

Figura: (1) Capilla en construcción y (2) Capilla finalizada 

La doble curvatura de esta capilla permite resistir los esfuerzos de presión, 

tensión y flexión de la construcción, por lo que de forma barata pueden obtenerse 

techados con gran resistencia de carga. Utilizando los conocimientos estudiados 

hasta el momento en las situaciones anteriores, ¿qué puedes observar de este 

diseño arquitectónico particular? Justifique su respuesta. 
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Situación de evaluación 

Considere la función 𝑓:ℝ2 → ℝ dada por 

𝑓(𝑥, 𝑦) = 𝑥3 + 3𝑥𝑦2 − 15𝑥 − 12𝑦 + 6, 

Estudie los puntos críticos de esta función para determinar los valores máximos 

y mínimos locales. Justifique su respuesta. 
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Apêndice B - Roteiros para observação dos encontros 

 

Ficha de observación 01 

Fecha: 
Nombre del observador: _________________________________________ 
 
Nombre de los alumnos observados:     N° de Grupo 
______________________________    ________________ 
______________________________ 
 
Condiciones de la observación: 
 

 El observador no debe interactuar con los alumnos observados durante el desarrollo 

de la situación didáctica. 

 Después de terminada la situación didáctica, recoger la ficha de trabajo del alumno. 

 Tener presente que la situación didáctica se desarrollará en parejas, una pareja por 

computador, luego observe el trabajo de la pareja como un todo.  

 Describir detalladamente las acciones de la pareja de alumnos de manera ordenada 

durante el desarrollo de cada actividad. 

 Enfóquese especialmente en las acciones y los comentarios que la pareja de 

alumnos hace en el momento que se va adueñando de la actividad. 

 En caso el alumno use el computador, indicarle que cree una carpeta <N° de 

grupo_situación01> y guarde todo su trabajo en esa carpeta. 
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Ficha de observación 02 

Fecha: 
Nombre del observador:_________________________________________ 
 
Nombre de los alumnos observados:    N° de grupo 
_____________________________    ______________ 
_____________________________ 
 
Condiciones de la observación: 
 

 El observador no debe interactuar con los alumnos observados durante el desarrollo 

de la situación didáctica. 

 Después de terminada la situación didáctica, recoger la ficha de trabajo del alumno. 

 Tener presente que la situación didáctica se desarrollará en parejas, una pareja por 

computador, luego observe el trabajo de la pareja como un todo.  

 Describir detalladamente las acciones de la pareja de alumnos de manera ordenada 

durante el desarrollo de cada actividad. 

 Enfóquese especialmente en las acciones y los comentarios que la pareja de 

alumnos hace en el momento que se va adueñando de la actividad. 

 Indicarle a la pareja crear una carpeta <N° de grupo_situación02> y guardar todo su 

trabajo en esa carpeta. 
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Ficha de observación 03 

Fecha: 
Nombre del observador:_________________________________________ 
 
Nombre de los alumnos observados:    N° de grupo 
______________________________    _________________ 
______________________________ 
 
Condiciones de la observación: 
 

 El observador no debe interactuar con los alumnos observados durante el desarrollo 

de la situación didáctica. 

 Después de terminada la situación didáctica, recoger la ficha de trabajo de la pareja 

de alumnos. 

 Tener presente que la situación didáctica se desarrollará en pareja de alumnos, una 

pareja por computador, luego observe el trabajo de la pareja como un todo.  

 Describir detalladamente las acciones de la pareja de alumnos de manera ordenada 

durante el desarrollo de cada actividad. 

 Enfóquese especialmente en las acciones y los comentarios que la pareja de 

alumnos hace en el momento que se va adueñando de la actividad. 

 Indicarle a la pareja crear una carpeta <N° de grupo_situación03> y guardar todo su 

trabajo en esa carpeta. 
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Ficha de observación 04 

Fecha: 
Nombre del observador:_________________________________________ 
 
Nombre de los alumnos observados:    N° de grupo 
______________________________    _______________ 
______________________________ 
 
Condiciones de la observación: 
 

 El observador no debe interactuar con los alumnos observados durante el desarrollo 

de la situación didáctica. 

 Después de terminada la situación didáctica, recoger la ficha de trabajo de la pareja 

de alumnos. 

 Tener presente que la situación didáctica se desarrollará en pareja de alumnos, una 

pareja por computador, luego observe el trabajo de la pareja como un todo.   

 Describir detalladamente las acciones de la pareja de alumnos de manera ordenada 

durante el desarrollo de cada actividad. 

 Enfóquese especialmente en las acciones y los comentarios que la pareja de 

alumnos hace en el momento que se va adueñando de la actividad. 

 Indicarle a la pareja crear una carpeta <N° de grupo_situación04> y guardar todo su 

trabajo en esa carpeta. 
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Ficha de observación 05 

Fecha: 
Nombre del observador:_________________________________________ 
 
Nombre de los alumnos observados:     N° de grupo 
__________________       ________ 
__________________ 
 
Condiciones de la observación: 
 

 El observador no debe interactuar con los alumnos observados durante el desarrollo 

de la situación didáctica. 

 Después de terminada la situación didáctica, recoger la ficha de trabajo de la pareja 

de alumnos. 

 Tener presente que la situación didáctica se desarrollará en pareja de alumnos, una 

pareja por computador, luego observe el trabajo de la pareja como un todo.  

 Describir detalladamente las acciones de la pareja de alumnos de manera ordenada 

durante el desarrollo de cada actividad. 

 Enfóquese especialmente en las acciones y los comentarios que la pareja de 

alumnos hace en el momento que se va adueñando de la actividad. 

 En caso la pareja de alumnos use o computador, indicarle crear una carpeta <N° de 

grupo_actividad_cierre> y guardar todo su trabajo en esa carpeta. 
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ANEXOS 
 

 

Anexo A - Ementa da disciplina Matemática III 
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Anexo B - Parecer do comitê de Ética. 
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Anexo C - Termo de compromisso dos alunos do curso 

 

TERMO DE COMPROMISSO 

O presente termo tem como objetivo esclarecer os procedimentos de nossa 

pesquisa, principalmente os relativos à utilização dos dados coletados. 

O material coletado, atividades realizadas, gravações em áudio e em vídeo, 

transcrições e registros escritos servirão de base para melhor entender em que 

medida e de que forma as situações de resolução de problemas, com apoio do 

Mathematica, influencia no desenvolvimento da atividade Matemática do aluno. 

O acesso aos registros em vídeo será exclusivo dos pesquisadores e só 

poderá ser apresentado com a autorização dos participantes. Nas transcrições e 

registros escritos, os mesmos terão seus nomes substituídos por pseudônimos, 

preservando-se a identidade dos sujeitos, no material escrito, produzido a partir dos 

dados coletados durante a realização da pesquisa. 

As informações provenientes das análises do material coletado poderão 

ainda ser utilizadas pelos pesquisadores em publicações e/ou eventos científicos. 

São Paulo, Fevereiro de 2014. 

 

 

 

 

  

 

Profa. Dra. Maria José Ferreira da Sivla 

Orientadora 

________________ 

Katia Vigo Ingar 

________________ 
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Anexo D - Termo de compromisso do professor do curso 

 

TERMO DE COMPROMISSO 

O presente termo tem como objetivo esclarecer os procedimentos de nossa 

pesquisa, principalmente os relativos à utilização dos dados coletados. 

O material coletado, atividades realizadas, gravações em áudio e em vídeo, 

transcrições e registros escritos servirão de base para melhor entender em que 

medida e de que forma as situações de resolução de problemas no contexto da 

engenharia, com apoio do Mathematica, influencia no desenvolvimento da atividade 

Matemática do aluno. 

O acesso aos registros em vídeo será exclusivo dos pesquisadores e só 

poderá ser apresentado com a autorização dos participantes. Nas transcrições e 

registros escritos, os mesmos terão seus nomes substituídos por pseudônimos, 

preservando-se a identidade dos sujeitos, no material escrito, produzido a partir dos 

dados coletados durante a realização da pesquisa. 

As informações provenientes das análises do material coletado poderão 

ainda ser utilizadas pelos pesquisadores em publicações e/ou eventos científicos. 

São Paulo, Fevereiro de 2014. 
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