FERNANDO PIVETA

ANÁLISE DA RELAÇÃO ENTRE O EVA®, INDICADORES DE DESEMPENHO E O PREÇO DA AÇÃO: UM ESTUDO DE CASO

MESTRADO EM ADMINISTRAÇÃO

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC / SP

SÃO PAULO 2006

FERNANDO PIVETA

ANÁLISE DA RELAÇÃO ENTRE O EVA®, INDICADORES DE DESEMPENHO E O PREÇO DA AÇÃO: UM ESTUDO DE CASO

MESTRADO EM ADMINISTRAÇÃO

Dissertação apresentada à Banca Examinadora da Pontifícia Universidade Católica de São Paulo, como exigência parcial para obtenção do título de Mestre em Administração, sob a orientação do Prof. Dr. José Santos dos Santos.

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC / SP

SÃO PAULO 2006

	adêmicos e científicos, a reprodução total ou cesso de fotocopiadoras ou eletrônicos.
, , , , , , , , , , , , , , , , , , ,	•
Assinatura:	Local e Data:

A minha amada esposa, fundamental na escalada de sucesso de minha vida. Minha eterna companheira, Ofereço esta dissertação.

Agradecimentos

Aos meus amados e queridos pais, pelo exemplo de vida, retidão de caráter, e a todos os infinitos ensinamentos que trouxeram êxito em minha vida.

A minha amada esposa e seus pais, pelo carinho e fraternidade compartilhados nestes anos.

A minha querida irmã Flávia e seu esposo, pelo carinho e afeto compartilhados.

Ao Prof. Dr. José Santos dos Santos, com quem tive o prazer de conviver e aprender em minha caminhada como aluno do Programa de Pós-Graduação, por sua atenção e dedicação nesta trajetória.

Ao Prof. Dr. Rubens Famá, membro da banca, com quem tive a honra de aprender através de disciplina ministrada, e pelas preciosas críticas e sugestões contidas neste trabalho.

Ao Prof. Dr. Edson Ferreira de Oliveira, membro da banca, pela valiosa análise desta dissertação e pelas preciosas recomendações.

A Carbocloro S.A. Indústrias Químicas, pelo apoio financeiro e compreensão em tempo nestes anos de estudo, apoio este fundamental para a consecução deste trabalho.

A Camargo Corrêa Cimentos S.A., pelo apoio financeiro destinado no início deste mestrado.

A Rita de Cássia, secretária do programa de Pós-Graduação da PUC-SP, pela atenção dispensada aos mestrandos.

A Deus, pela vida.

RESUMO

ANÁLISE DA RELAÇÃO ENTRE O EVA®, INDICADORES DE DESEMPENHO E O PREÇO DA AÇÃO: UM ESTUDO DE CASO

Com a evolução dos modelos de gestão ao longo do tempo, as organizações têm buscado, incessantemente, formas de minimizarem o risco à tomada de decisão. Novos métodos de avaliação de performance estão presentes nas organizações como, por exemplo, o EVA®, proporcionando uma avaliação madura entre os investimentos e os seus respectivos custos, promovendo uma visão de geração de valor. O objetivo desta dissertação é promover uma avaliação teórico-prática entre a relação do EVA®, os indicadores de desempenho e o preço da ação em um estudo de caso, envolvendo a Embraer e o setor aeroespacial mundial. Para tanto, esta dissertação inicia-se com a observação teórica dos principais temas em análise, como a estrutura de capital, custos envolvidos e o EVA® e em seguida passa-se a aplicar tais conceitos na observação do EVA® como metodologia de explicitação de valor e suas correlações com os demais indicadores de desempenho, tanto para a Embraer, bem como para o setor aeroespacial mundial. Os resultados obtidos nesta pesquisa, em primeiro momento com a Embraer e em seguida para o setor aeroespacial, foram semelhantes ao não mostrarem correlação significante entre o EVA® e o preço da ação. Semelhantemente, as maiores e mais significantes correlações se deram entre o EVA® e os indicadores de desempenho operacionais, que refletiam a posição corrente das empresas em análises.

Palavras-Chaves: EVA® *Economic Value Added* 'Valor Econômico Adicionado' – Valor – Estrutura de Capital – Indicadores de Desempenho.

ABSTRACT

ANALYSIS OF THE RELATION AMONG EVA®, PERFOMANCE INDICATORS AND THE STOCK PRICE: A STUDY OF CASE

With the managerial models evolution, the companies have been found, incessantly, ways to minimize the risk inherent for taking decision. New evaluation methodologies are persistently live inside of the organizations, for example, the EVA®, providing an updated evaluation between investments and its costs, promoting a value generation overview. The aim of this dissertation is to promote a theoretical and practical evaluation among EVA®, performance indicators and stock price in a study of case contemplating Embraer and the worldwide aerospace market. However, this dissertation begins with a theoretical observation of the main themes in analysis, as capital structure, costs involved and EVA®, and forward, applying these concepts in the EVA® observation as value methodology and its correlation with other performance indicators, as well as Embraer and world aerospace market. The results achieved in this research, at first moment by Embraer followed by aerospace sector, were similar didn't have significant correlation between EVA® and stock price. Similarly, the more significant correlations occurred between EVA® and the operational performance indicators, reflecting the current positions of the companies in analysis.

Key words: EVA® *Economic Value Added* – Value – Capital Structure – Performance Indicators.

SUMÁRIO

1. INTRODUÇÃO	1
1.1 Abordagem Inicial	1
1.2 Caracterização do Problema	
1.3 Objetivos da Pesquisa	
1.4 Procedimentos Metodológicos	
1.5 Justificativa	6
1.6 Hipótese da Pesquisa	
1.7 Estrutura do Trabalho	<i>,</i>
1.7 Estructura do Trabanio	/
2. FUNDAMENTAÇÃO TEÓRICA	Q
2.1 ONDINEERINGIO I DOMONI	
2.1 O Conceito de Capital	9
2.2 As Fontes de Capital	
2.3 Custo de Capital	
2.4 Custo de Capital Próprio	
2.4.1 Definições Conjuntas	
2.4.2 CAPM	
2.5 Custo de Capital de Terceiros	
2.5.1 Definições conjuntas	
2.5.2 Fórmulas e interpretações	
2.6 Estrutura de Capital	
2.6.1 Definições conjuntas	
2.6.2 Relação entre estrutura, custo e risco	
2.6.3 Estrutura ótima de capital	27
2.7 Economic Value Added (EVA®)	
2.7.1 Definições consolidadas	29
2.7.2 Fórmulas e interpretações	33
2.7.3 O EVA como ferramenta de análise gerencial	41
2.8 Os componentes do valor a partir do EVA®	43
3. PANORAMA DO SETOR AEROESPACIAL	46
4. A EMPRESA EM ANÁLISE	51
F DEGOLUGA E ANÁLIGE DOG DEGLU EADOG	
5. PESQUISA E ANÁLISE DOS RESULTADOS	55
5.1 Apresentação dos resultados obtidos	5.5
5.1.1 Demonstrativo do Resultado do Exercício	
5.1.2 Balanço Patrimonial	
5.1.3 Os indicadores de performance	
5.1.4 O custo do capital próprio da Embraer	
5.1.5 Custo de capital de terceiros da Embraer	
5.1.6 Custo médio ponderado de capital	
5.1.7 O EVA® da Embraer	
5.2 As análises envolvendo a Embraer	
5.3 As análises envolvendo o setor aeroespacial mundial	
2.5 2.5 ununses envolvenuo o setor aeroespaciai munutai	70
6. CONSIDERAÇÕES FINAIS	90
RIRI IOCDAFIA	02

LISTA DE FIGURAS

Figura 1: Formas de liquidação dos recursos de uma organização	11
Figura 2: As fontes de capital.	.12
Figura 3: A composição do valor através do EVA®	44

LISTA DE GRÁFICOS

Gráfico 1: Security Market Line	19
Gráfico 2: Receita em US\$ das empresas aéreas por passageiro por quilômetro voado	48
Gráfico 3: Lucratividade do setor aeroespacial mundial	48
Gráfico 4: Pedidos e entregas em unidades de aviões no mundo	49
Gráfico 5: Evolução da receita líquida da Embraer em R\$ bilhões em relação à taxa do Dó	ilar
	57
Gráfico 6: Evolução percentual da análise vertical (1995-2004)	58

LISTA DE TABELAS

Tabela 1: Demonstração das variáveis da estrutura ótima de capital	28
Tabela 2: Projeção em unidades de vendas de aviões de 10 a 120 acentos (2001 até 2010)47
Tabela 3: Receita líquida (US\$ milhões) do setor aeroespacial	49
Tabela 4: Lucro Líquido (US\$ milhões) do setor aeroespacial	50
Tabela 5: Número de aeronaves entregues pela Embraer e concorrentes	54
Tabela 6: Demonstrativo de resultado da Embraer – R\$ mil (1995-2004)	56
Tabela 7: Análise horizontal da Embraer (1995-2004)	56
Tabela 8: Análise vertical da Embraer (1995-2004)	57
Tabela 9: Balanço patrimonial da Embraer - R\$ mil – (1995-2004)	59
Tabela 10: Indicadores de Desempenho da Embraer – (1995-2004)	60
Tabela 11: Evolução do custo de capital próprio da Embraer – (1995-2004)	63
Tabela 12: Evolução do custo de capital de terceiros da Embraer – (1995-2004)	64
Tabela 13: Evolução do custo médio ponderado de capital da Embraer (1995-2004)	65
Tabela 14: Evolução do EVA® - R\$ mil (1995-2004)	66
Tabela 15: Evolução do Valor da Embraer (1995-2004) – R\$ mil	67
Tabela 16: Evolução do Valor da Embraer (1994-2004) – R\$ mil	67
Tabela 17: Variação em % dos indicadores de desempenho (1995-2004)	68
Tabela 18: R ² entre os principais indicadores de desempenho (1995-2004)	69
Tabela 19: Teste t entre os principais indicadores de desempenho (1995-2004)	70
Tabela 20: Validação das variáveis independentes para a Embraer (1995-2004)	70
Tabela 21: Caso 1 – Regressão Múltipla	73
Tabela 22: Caso 2 – Regressão Múltipla	73
Tabela 23: Caso 3 – Regressão Múltipla	73
Tabela 24: Caso 4 – Regressão Múltipla	73
Tabela 25: Regressão linear simples em 2003 – Setor aeroespacial	79
Tabela 26: Teste t em 2003 – Setor aeroespacial.	79
Tabela 27: Validação das variáveis independentes em 2003 – Setor aeroespacial	80
Tabela 28: Regressão linear simples em 2004 – Setor aeroespacial	81
Tabela 29: Teste t em 2004– Setor aeroespacial	81

Tabela 30: Validação das variáveis independentes em 2004 – Setor aeroespacial	82
Tabela 31: Regressão linear simples em 2005 – Setor aeroespacial	82
Tabela 32: Teste t em 2005 – Setor aeroespacial	83
Tabela 33: Validação das variáveis independentes em 2005 – Setor aeroespacial	83
Tabela 34: Regressão linear simples (mediana 2003, 2004 e 2005) – Setor aeroespacial	84
Tabela 35: Teste t (mediana 2003, 2004 e 2005) — Setor aeroespacial	84
Tabela 36: Validação das variáveis independentes (mediana 2003, 2004 e 2005) – Setor	
aeroespacial	85
Tabela 37: Melhores combinações entre variáveis (2005) – Setor aeroespacial	87
Tabela 38: Melhores combinações entre variáveis (mediana) – Setor aeroespacial	89

1. INTRODUÇÃO

1.1 Abordagem Inicial

Em finanças, um dos assuntos mais controversos paira sobre a estrutura do capital de uma empresa e sua relação com a geração de valor. No campo teórico-científico, os primeiros estudos sobre esse tópico partem dos trabalhos de Modigliani e Miller (1958), que identificaram a existência de duas fontes de capital: a fonte própria, constituída, em linhas gerais, de recursos dos acionistas, e as fontes de terceiros, em que a contratação de capital é realizada através de dívida.

Com base nos estudos de Modigliani e Miller (1958), teóricos como Ross, Brigham, Gapenski e Gitman passaram a avaliar a hipótese de que existiria uma estrutura de capital mista, cuja combinação entre as fontes própria e de terceiros poderia proporcionar vantagens para a organização.

Para avaliar a influência da estrutura de capital na geração de valor para a companhia, foram introduzidos os meios para avaliação de desempenho. Autores como Copeland e Weston (1992), Rappaport (2001), Anthony e Govindarajan (2002) passaram a estudar modelos de avaliação existentes, partindo do pressuposto de que esses tendiam a se basear em um cenário anterior, em que livros fiscais e demonstrações contábeis informavam dados históricos. Nesse momento, houve a necessidade de superação de análises em regimes já ocorridos, em favor de uma análise de desempenho que visasse a uma oportunidade de crescimento futuro para as organizações.

A tendência de ruptura de um modelo de análise de desempenho historicamente seguido e disseminado ocorreu, principalmente, pela necessidade de informações mais precisas ou, ainda, de informações que minimizassem as incertezas na tomada de decisão.

Como sabemos, nas empresas contemporâneas, alguns indicadores de desempenho como EBITDA¹, ROE², ROA³, ROCE⁴ e outros, auxiliam na tomada de decisão, porém, não se pode deixar de considerar que qualquer tipo de decisão ou alteração de rota estará sendo admitida a partir de um cenário passado e poderão, assim, divergir totalmente das expectativas organizacionais futuras.

A evolução organizacional impõe um ritmo de atualização dos mecanismos de gestão altamente frenético, onde, a cada momento, executivos buscam respostas para tornar seus negócios mais rentáveis e atrativos. Com isso, inúmeras variáveis são analisadas, e inevitavelmente, a ponderação de fatores que levem à redução do risco e o aumento do retorno, farão parte das decisões dos grandes grupos econômicos.

Em decorrência à falta de ferramentas que possibilitem a minimização das incertezas na tomada de decisão, surge a demanda por modelos de análise de desempenho que possuam a capacidade de informar ou prever quais as melhores alternativas envolvendo a alocação de recursos que podem maximizar o retorno para uma organização. Nessa perspectiva, surge o Economic Value Added (EVA) (Stern&Stewart, 1990), que propicia uma análise determinante entre o desempenho operacional e o montante de capital empregado.

Para obter um amparo maior nas decisões estratégicas, o mundo corporativo aliou a visão de passado às projeções futuras, com a ferramenta EVA®, abordada com maior profundidade no decorrer deste trabalho. A partir daí, constatou-se um desenvolvimento significativo no universo dos assuntos de finanças, proporcionando ao administrador um conjunto de instrumentos para a tomada de decisões com maior poder de acerto, reduzindo, dessa forma, os riscos diversos que cercam um determinado negócio.

 ¹ EBITDA – Lucro antes dos impostos, depreciação e amortização
 ² ROE – Retorno sobre o capital empregado

³ ROA - Retorno sobre o ativo total

1.2 Caracterização do Problema

A partir dos anos 90, principalmente as grandes empresas em âmbito mundial, incluindo empresas brasileiras, têm questionado a forma pelo qual o resultado das organizações é apurado e demonstrado. Indicadores de desempenho como o lucro por ação, retorno sobre o patrimônio líquido, retorno sobre investimento, tendem, sobre a ótica de muitos administradores, a não informarem a geração ou não de valor para uma organização. Portanto, uma solução encontrada a fim de permitir evidencias claras da riqueza gerada em uma determinada organização tem se dado com a utilização da metodologia do *Economic Value Added EVA®*, ou seja, valor econômico adicionado. A utilização desta metodologia possibilita ao administrador introduzir a variável custo de capital para a análise e, assim, mensurar a geração de riqueza, principal interesse dos acionistas.

O que faz do *EVA*® uma metodologia diferenciada frente aos já conhecidos e tradicionais indicadores de desempenho, é que inclui na análise o custo pela utilização do capital, seja este próprio, de seus acionistas, ou de terceiros, fontes de financiamento.

Atualmente, o que tem se observado no mundo empresarial é que o *EVA*® encontra respaldo no que se chama de ferramentas de gestão, concentrando esforços também no fornecimento de informações gerenciais para auxílio na tomada de decisão.

Segundo Makelainen (1998: 3),

Na literatura gerencial e acadêmica tem havido um debate intenso contra e a favor do EVA®, e infelizmente seus defensores não têm reconhecido ou discutido suas falhas; enquanto estes elogiam o conceito como uma ferramenta gerencial, a maior parte dos que criticam o EVA® têm se limitado a questionar pontos irrelevantes do ponto de vista de controle corporativo. Correntemente há muito poucos artigos que tratam de forma objetiva dos pontos fortes e fracos do EVA® como ferramenta gerencial.

Se pretendermos entender mais abrangentemente os aspectos intrínsecos do EVA® é necessário, em primeiro momento, avaliar claramente quais os principais efeitos

-

⁴ ROCE – Retorno sobre o capital empregado

organizacionais que afetam a performance deste indicador, sejam eles o custo de capital, a estrutura de capital, a geração operacional, todos estes abordados na pesquisa e, ainda, as relações do *EVA*® como os principais indicadores de desempenho.

O problema de pesquisa concentra-se na caracterização de evidências dos fatores que promovem a criação de riqueza traduzida pelo *EVA*® e a sua respectiva relação com os principais indicadores de desempenho.

1.3 Objetivos da Pesquisa

Com base na situação proposta na caracterização do problema para análise, o objetivo deste estudo é promover uma análise teórico-prática que seja capaz de informar como o EVA® se correlaciona, tanto para a Embraer bem como para o setor aeroespacial, com os principais indicadores de desempenho e, ainda, com o preço da ação.

Este objetivo pressupõe, principalmente, quando relacionamos o EVA® com os principais indicadores de desempenho, se tais indicadores potencializam com mesma intensidade o desempenho organizacional e, assim, quais deles se destacam com maior ligação com o EVA®.

Para que o objetivo principal desta pesquisa seja alcançando, sub-objetivos foram traçados, sendo eles:

- Realizar revisão bibliográfica sobre os pressupostos em análise e prepará-los para aplicação em campo prático;
- Verificar a aderência das correlações propostas entre os estudos teóricos e a situação prática.

1.4 Procedimentos Metodológicos

Nesta pesquisa será adotado o método do estudo de caso, contemplando um caráter bibliográfico prévio, onde serão abordados os principais conceitos e em momento posterior, a utilização à pratica.

Segundo Martins (1994: 28), o estudo de caso: "Dedica-se a estudos intensivos do passado, presente e interações ambientais de uma (ou algumas) unidade social: indivíduo, grupo, instituição, comunidade. São validados pelo rigor do protocolo estabelecido."

Para Yin (2001: 19): "Como esforço de pesquisa, o estudo de caso contribui de forma inigualável, para a compreensão que temos dos fenômenos individuais, organizacionais e políticos. Não surpreendentemente, o estudo de caso vem sendo uma estratégia comum de pesquisa na Psicologia, na Sociologia, na ciência política, na Administração, no trabalho social e no planejamento."

Esta pesquisa consiste em um estudo de caso, uma vez que visa compreender um fenômeno em um determinado contexto. Nela, trataremos de abordar conceitos teóricos definidos pelo objetivo de pesquisa nas mais diversas vertentes, e aplicá-los à prática.

Para alcançarmos o objetivo proposto, realizaremos, inicialmente, uma revisão da literatura sobre o tema, a fim de evidenciarmos tendências e contrapor opiniões de diversas linhas de pensamento.

Neste estudo de caso tem-se a intenção de investigar as possíveis causas dos efeitos teóricos obtidos no estudo de caso para a empresa Embraer e o setor aeroespacial, promovendo assim reflexão do tema e a possibilidade de aplicação do modelo analisado para outros setores. A metodologia adotada, estudo de caso, é extremamente benéfica quando perguntas do tipo como? Por quê? fazem parte do contexto de análise.

O fator motivador da utilização do estudo de caso como metodologia de pesquisa, se dá principalmente pela possibilidade de utilizar uma empresa e um setor real e, portanto, averiguar os aspectos teóricos do *EVA*® e suas relações de forma prática.

1.5 Justificativa

As questões relacionadas às ferramentas de análise de desempenho econômicofinanceiro e artifícios que auxiliam à tomada de decisão em uma organização sempre foram abordadas de forma ampla e, em muitos casos, teóricos partilham pressupostos, em outros, discordam veementemente.

No intuito de prover uma ampla e consistente abordagem, o tema *EVA*® associado ao desempenho organizacional foi escolhido objetivando trazer aos leitores uma visão não somente teórica, mas através do estudo de caso, utilizar os conceitos na observação real do desempenho da EMBRAER e do setor aeroespacial.

Ainda, por se tratar de um assunto relativamente novo se comparado com os demais, o *EVA*® nas diversas literaturas é abordado principalmente em exemplos internacionais, e assim, tal estudo com a EMBRAER motiva à uma reflexão interna, onde uma empresa brasileira passa por análises técnicas específicas.

Foram fatores motivadores deste estudo:

- A importância do tema para as comunidades acadêmico e empresarial;
- A significativa melhora da situação financeira da empresa após o processo de privatização de 1994;
- A escassez de pesquisas no mercado, abordando a relação entre EVA®, indicadores de desempenho e o preço da ação no mercado aeroespacial;

 A necessidade em traduzir a teoria à pratica, promovendo análises quantitativas e qualitativas em um estudo de caso real, provocando o despertar de acadêmicos e administradores aos mais diversos e modernos conceitos em administração voltada ao valor.

1.6 Hipótese da Pesquisa

As questões centrais desta dissertação são:

H0 (hipótese nula) – não existe correlação significativa entre o EVA®, o preço da ação e os principais indicadores de desempenho da Embraer e do setor aeroespacial;

H1 (hipótese alternativa) - existe correlação significativa entre o EVA®, o preço da ação e os principais indicadores de desempenho da Embraer e do setor aeroespacial;

1.7 Estrutura do Trabalho

A presente dissertação está dividida em cinco capítulos: Introdução, Fundamentação Teórica, Panorama do Setor Aeroespacial, Empresa em Análise, Análise de dados e Discussão de Resultados.

No primeiro capítulo, introdução, serão discutidos aspectos estruturais da pesquisa, informando as justificativas motivadoras do tema, aspectos metodológicos e o objetivo que será perseguido.

No segundo capítulo, serão abordados os conceitos teóricos que auxiliarão na compreensão das ferramentas em análise, tais como conceito de capital, fontes de capital, custos de capital, estrutura de capital e *EVA*®.

No terceiro capítulo, será apresentado um panorama do setor aeroespacial mundial, cenário em que serão analisados os principais números do mercado, suas implicações atuais e os prognósticos futuros.

No quarto capítulo, será delineado o contexto histórico e desempenho econômico-financeiro da EMBRAER, empresa escolhida para o estudo de caso.

O quinto capítulo será responsável por apresentar a pesquisa, ou seja, o estudo de caso, onde a teoria será demonstrada à prática, onde os pressupostos apresentados no início deste trabalho serão demonstrados tanto para a Embraer quanto para o setor aeroespacial.

2. FUNDAMENTAÇÃO TEÓRICA

2.1 O Conceito de Capital

A maioria dos autores que trata de conceituar o capital, apresenta, de modo geral, como um montante de recursos que, de formas diversas, adentra em uma determinada organização.

Para Brigham e Houston (1999: 344), "o capital é um fator de produção necessário e, como qualquer outro fator, ele tem um custo". Esta definição corrobora a idéia de que, para qualquer aumento nos ativos da empresa, há a necessidade de aumento no capital. Nesse sentido, é factível citar que as fontes de recursos que uma empresa adota em sua estrutura influenciarão positiva ou negativamente o seu desempenho, dependendo em primeira análise, do custo deste recurso.

Copeland e Weston (1992: 565), relatam que "Existem fortes diferenças entre empresas no que se refere à estrutura financeira discriminada no passivo destas organizações. Entendendo estas diferenças e o porquê desta persistência, é fundamental, e ainda questão não resolvida em finanças. Se há uma estrutura ótima de capital para uma companhia isto minimizará o custo de oportunidade do capital e maximizará a riqueza dos acionistas."5 Assim, o capital seria o fator financiador das operações de uma companhia. O capital é, em uma analogia, o motor de uma organização. Ele pode ser próprio ou de terceiros, entretanto, a empresa depende para sua expansão e perpetuação de fontes consistentes de recursos, capazes de suportarem e influenciarem as decisões estratégicas das organizações.

Grellmann (1981: 2) tece comentários sobre as abordagens diversas que o custo de capital em si promove: "[...] um dos assuntos mais controvertidos e complexos no campo das finanças". Os contínuos aprimoramentos das teorias de finanças fizeram com que o assunto

⁵ "There are persistent differences across industries in the financial structure of the liabilities of their balance sheet side. Understanding these differences and why they persist is a central, and as yet unresolved, issue in financial economics. If there is an optimal capital structure for a company it will minimize the opportunity cost of capital and maximize shareholders' wealth."

estrutura de capital se tornasse extremamente controverso, uma vez que, inicialmente baseava-se na fundamentação de que não gerava valor para as organizações, e com o passar dos anos, novos estudos posicionaram-se no sentido de que esta realidade é passível de mudança, assumindo nova posição, podendo gerar valor a partir de determinada estrutura de capital.

Gitman (1997: 384), condiciona a questão capital à inserção de recursos, sejam eles próprios ou de terceiros, na manutenção e expansão de uma determinada organização. Para ele "O financiamento a longo prazo dá suporte aos investimentos nos ativos permanentes da empresa, supondo que estes tenham sido selecionados através das técnicas apropriadas de investimento de capital. Há quatro fontes básicas de fundos de longo prazo para a empresa: empréstimos a longo prazo, ações preferenciais, ações ordinárias e lucros retidos."

Ross, Wasterfield e Jaffe (2002: 318), definem que o capital se constitui em uma fonte de financiamento, estando sob o controle da organização optar sobre a sua composição. Os autores explicam que "É convencional fazer referência às escolhas a respeito de capital de terceiros e capital próprio como decisões a respeito de estrutura de capital. Entretanto, o termo decisões a respeito de estrutura de financiamento seria mais preciso."

Pettit (1998: 57-68), observa que, "A maioria dos administradores financeiros das empresas não conhece o seu custo de capital". Isto se defronta diretamente com a condição de avaliação de projetos sem a devida atenção aos custos de capital envolvidos e, assim, a tomada equivocada de decisões.

2.2 As Fontes de Capital

Na seção anterior, foi possível identificar a existência de duas fontes de geração de capital. A primeira refere-se ao capital próprio. A segunda constitui os recursos chamados "de terceiros", sendo estes valores monetários disponibilizados como empréstimos por fontes não ligadas à empresa.

Damodaran (2001: 482, 483) retrata as principais diferenças entre as duas fontes, conforme demonstrado na citação a seguir:

A maioria de nós pode achar a dívida e capital próprio apenas em termos de bônus e ações, mas a diferença é verdadeiramente tratada no cerne da questão, isto é, em relação ao fluxo de caixa da empresa. A primeira diferença é que a divida está relacionada diretamente à quem a fornece, ou seja, o credor, envolvendo pagamento de juros e principal, sendo que o capital próprio proporciona à seu dono quitação posterior as demais fontes.⁶

Contudo, os recursos apresentados possuem diferenciação não só na origem, mas também nas formas em que são liquidados, ou melhor, atendidos quanto à necessidade de quitação e/ou renovação, como pode ser observado nas figuras abaixo:

Figura 1: Formas de liquidação dos recursos de uma organização

Obrigatoriedade fixa

Alta prioridade no fluxo de caixa

Dedução de imposto

Maturidade fixa

Controle não gerenciável

Obrigatoriedade residual

A menor prioridade no fluxo de caixa

Indedutibilidade nos impostos

Tempo de vida infinito

Controle gerenciável

Terceiros Próprio

Fonte: adaptado de Damodaran (2001: 483).

Para Gitman (1997: 431), todos os itens dispostos ao lado direito do balanço a seguir, que exclui o passivo circulante, podem ser considerados fontes de capital:

⁶ "Most of us may think of debt and equity in terms of bonds and stocks, but the difference between debt and equity lies in the nature of their claims on the firm's cash flow. The firs distinction is that a debt claim entitles the holder of the claim to a contracted set of cash flows (usually interest and principal payments), whereas an equity claim entitles the holder to any cash flows left over the meeting all other promised claim"

Figura 2: As fontes de capital

В	alanço		
	Passivo Circulante		
	Empréstimo a longo prazo	Capital de Terceiros	
Ativo	Patrimônio Líquido	Capital Próprio	Capital Próprio
	- Ações preferenciais		
	- Ações ordinárias		
	Lucros Retidos		

Fonte: Gitman (1997: 431).

O autor explica que "O capital de terceiros inclui qualquer tipo de fundos a longo prazo, obtidos pela empresa via empréstimos." (Gitman, 1997:431). Corroborando o pensamento de Damodaran (2001), Gitman (1997) evidencia o fato do capital de terceiros ser inferior quanto aos seus respectivos custos em relação ao capital próprio, uma vez que o risco do capital próprio é maior do que o de terceiros e, em uma hierarquia de quitação, a exigibilidade da fonte de recursos de terceiros está em posição privilegiada.

Quanto ao capital próprio, Gitman (1997: 431) informa que "O capital próprio consiste em fundos de longo prazo, fornecidos pelos próprios proprietários da empresa, os acionistas."

Ross, Wasterfield e Jaffe (2002: 303), afirmam que as fontes de recursos mais comumente conhecidas em uma organização são: ações ordinárias, ações preferenciais e endividamento a longo prazo. Ao abordarem a questão sobre as ações ordinárias, eles colocam que "Os titulares das ações ordinárias de uma empresa são chamados de acionistas."

Tanto para Ross, Wasterfield e Jaffe (2002) quanto para Gitman (1997), as ações ordinárias constituem um capital arriscado, pois, apesar de constituírem ações provenientes dos chamados donos do capital próprio, ou acionistas, tais ações não oferecem prioridade quanto aos pagamentos de dividendos.

Conforme Ross, Wasterfield e Jaffe (2002: 309),

A ação preferencial representa capital próprio de uma sociedade por ações, mas difere da ação ordinária por possuir preferência em relação à ação ordinária, sobre o pagamento de dividendos e sobre os ativos da empresa, em caso de falência. A palavra preferência indica apenas que o titular da ação preferencial deve receber um dividendo (no caso de uma empresa em condições normais) antes de que os titulares de ações ordinárias recebam qualquer remuneração.

Uma outra fonte de capital próprio pode se dar através dos lucros retidos. Conforme Ross, Wasterfield e Jaffe (2002: 304), "A quantia gerada de lucro em um determinado período e que não é executada através dos pagamentos de dividendos, e assim, possui a suas respectiva inserção na vida operacional da organização, pode ser chamada de lucro retido."

Um empréstimo constitui em uma obrigação bilateral, pela qual passam a valer regras específicas, e um possível não cumprimento pode gerar restrições para os devedores. Outra característica em um empréstimo de longo prazo pode se dar através da emissão de títulos privados, em que, da mesma forma de um empréstimo bancário, o devedor assegura que está captando determinado valor de uma instituição ou investidor e compromete-se a cumprir com exigências preestabelecidas.

2.3 Custo de Capital

De acordo com Brigham e Gapenski (1996: 342), o custo de capital consiste no valor pago pelas diversas fontes de capital, sejam elas de terceiros ou de capital próprio. O resultado ponderado do custo destas fontes consiste no custo médio ponderado do capital (WACC – Weighted Average Capital Cost).

Para os autores, o custo do capital é importante por três razões:

- a) a valorização da organização depende da minimização do custo do capital e, para isso, é preciso conhecê-lo a fundo;
- b) para que haja perspectiva mais ampla do custo de capital, é preciso estabelecer uma estimativa;

 c) outras decisões dentro de uma organização serão amparadas pela estruturação e estimativa de custo de capital.

De fato, o custo de capital é algo tão importante para uma empresa quanto a ampliação de seus negócios. É possível avaliar que existe uma preocupação das empresas de maior porte em manterem um acompanhamento das fontes de capital que possam propiciar uma otimização final de seu custo.

De acordo com Muney (1969), o conhecimento do custo de capital pelo administrador é essencial, primeiro pela necessidade de avaliações de performance entre projetos, alocando recursos e decisões à mais promissora proposta e segundo porque, o conhecimento do custo de uma determinada fonte de capital o faz capaz de inferir em decisões para aquisição de fontes mais interessantes paras as atividades da empresa.

De acordo com Brigham e Gapenski (1996: 370, 371), há uma diferenciação entre custo de capital e custo de capital total. Em uma organização, há a possibilidade de financiamento apenas com recursos próprios, porém, pelo limitador desta fonte, a maioria das empresas tende a utilizar de outras fontes de capital, tendo como denominação os chamados componentes de capital, ou seja, todos os fornecedores de capital de uma organização.

Com o uso dos diversos componentes de capital, a organização arcará com o chamado custo do componente de capital, formado a partir da expectativa de reforço de cada fonte de recurso, sempre levando em conta, além de outros fatores, o risco envolvido na operação.

Para Ross, Wasterfield e Jaffe (2002: 257), com a abordagem sobre o custo de capital, a empresa pode optar pelas fontes disponíveis. Então, havendo excesso de recursos, pode utilizar a própria geração de lucro como fonte de capital e, assim, do ponto de vista da empresa, o retorno esperado será o custo de capital próprio.

O custo de capital passa a ser avaliado de forma completa a partir do momento em que todas as fontes têm o seu respectivo custo, e a empresa tem como desafio tornar a ponderação dos custos envolvidos mais atrativa para a organização.

Copeland e Weston (1992), definem que o custo de capital próprio é o retorno esperado de seus acionistas. Já o custo de capital de terceiros passa a ser considerado o retorno exigido pelo credor da dívida e, a cada montante incremental, este é influenciado.

2.4 Custo de Capital Próprio

2.4.1 Definições Conjuntas

O capital próprio representa a parcela que os acionistas constituem em suas organizações e, a partir dele, passam a valer-se da expectativa de retornos sucessivos, que venha cobrir o chamado custo pelo capital.

Para Martins e Assaf Neto (1986: 482),

O custo de capital próprio (Kc) de uma empresa é definido pelo retorno (k), requerido por seus acionistas ao investirem seus recursos no empreendimento. Ao levantar recursos no mercado acionário, ou mesmo, ao reter parte de seus lucros, a empresa deverá aplicá-los em projetos (ativos) rentáveis, de modo que o retorno produzido possa remunerar seus acionistas em nível equivalente às suas expectativas. Dessa forma, a remuneração mínima exigida pelos acionistas constitui-se, em última análise, no custo de capital próprio da empresa.

Quanto ao custo de oportunidade, variável intrínseca na constituição do capital próprio, Galesne, Fensterseifer e Lamb (1999) definem que este consiste na variável definida no momento em que se constitui investimento alternativo, ocupando a mesma classe de risco.

Para Porterfield (1976), o custo de oportunidade refere-se ao custo implícito em alternativas semelhantes ao projeto demandado pela companhia que, no momento de escolha de um determinado projeto de investimento por parte da organização, são abandonadas pelos investidores.

Para Martins (1987: 160), "[...] se alguém investe um determinado valor para formar uma empresa, precisa primeiro receber a correção monetária desse valor, o que é feito mediante nosso sistema de correção monetária [...]. Depois, deveria ser ainda registrado um juro mínimo sobre esse valor corrigido, para separar quanto da remuneração não é efetivamente, genuinamente, lucro."

Stewart (1990: 434) explica que "O custo de capital próprio de uma companhia é mais abstrato porque ele não é prontamente observável. Ao contrário, trata-se de um custo de oportunidade igual ao retorno total que os investidores de uma companhia poderiam esperar ganhar de alternativas de investimento com riscos comparáveis."

Então, a questão principal move-se no sentido de que em uma operação livre de risco, sem a possibilidade de perda, o retorno será mínimo, em comparação a uma operação que exija maior esforço quanto em assumir risco e, consequentemente, o retorno possível será maior.

Copeland, Koller e Murrin (2002: 218), ressaltam a dificuldade de estimar o custo de capital próprio, uma vez que não é perceptível no mercado. Para eles, "O custo de oportunidade do financiamento pelo capital ordinário é o de mais difícil estimativa porque não pode ser diretamente observado no mercado."

Ross, Wasterfield e Jaffe (2002: 148), por sua vez, chamam a atenção para o fato de que "A empresa talvez possua um ativo que esteja pensando em vender, alugar ou empregar em algum outro setor de atividade. Se o ativo for utilizado num projeto, as receitas que possa gerar em empregos alternativos serão perdidas. Essas receitas perdidas podem ser corretamente vistas como custos. São chamados de custos de oportunidade, pois, ao realizar o projeto, a empresa renuncia a outras oportunidades de utilização do ativo."

Para Horngren (1986: 528), "O custo de oportunidade é o sacrifício mensurável da rejeição de uma alternativa; é o montante máximo sacrificado pelo abandono de uma alternativa; é o lucro máximo que poderia ter sido obtido se o bem, serviço ou capacidade produtiva tivessem sido aplicados a outro uso opcional."

De acordo com as diversas vertentes do pensamento teórico, o custo de capital próprio

e, por conseguinte, mais especificamente o custo de oportunidade, equivale ao melhor retorno

possível, visto que o investidor percorrerá às diversas alternativas disponíveis a fim de

encontrar a melhor opção para investimento. Assim, a identificação de uma hipótese

excelente, de mesma classificação de risco ao projeto pretendido, definirá como custo de

oportunidade tal relação.

Nesta dissertação, ao apresentarmos os conceitos sobre a constituição do capital

próprio, deveremos explorar como mensurar o custo desta fonte. Porém, na elaboração destas

definições, não estaremos objetivando detalhar os modelos de mensuração do custo de capital

próprio. Ao invés disso, o objetivo central é identificar quais as principais práticas e como são

utilizadas, já que estes modelos servirão como base para os aprofundamentos práticos que

serão procedidos no estudo de caso.

Com relação à mensuração do custo de capital próprio, Ross, Wasterfield e Jaffe

(2002: 240) evidenciam a existência de alguns modelos, como é o caso do CAPM (Capital

Asset Pricing Model) e do APT (Arbitrage Pricing Theory). O primeiro modelo (CAPM)

"[...] propõe uma relação positiva (e linear) entre o beta e o seu retorno esperado." Já o APT

"[...] pressupõe que os retornos dos títulos são gerados por uma série de fatores setoriais e

gerais de mercados.", este não estudado neste trabalho.

2.4.2 CAPM

O modelo CAPM provê a mensuração do risco não diversificável de um ativo. Em

linhas gerais, a equação que define o CAPM, ou SML (Security Market Line), é a seguinte:

E(Rj) = Rf + [E(Rm) - Rf)]bj,

Na qual:

E(Rj) = Retorno esperado

17

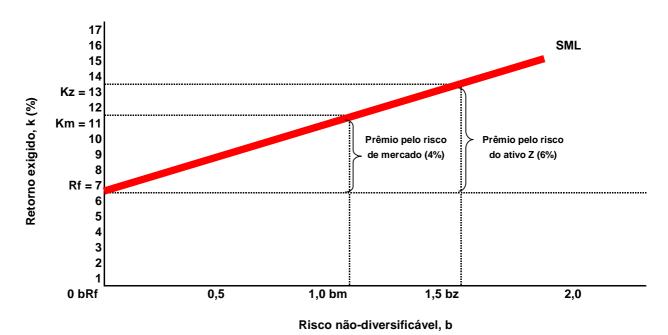
Rf = Retorno livre de risco

E(Rm) = Retorno esperado de mercado

bj = quantificação do risco não diversificável = COV⁷ (Rj,Rm)/VAR⁸ (Rm)

Para Ross, Wasterfield e Jaffe (2002), o beta, ou b, é definido pela relação de sensibilidade de um determinado ativo e o mercado. Sendo assim, a condição de rico, definida pelo beta, poderia estar em alinhada ao mercado [ou em situação oposta, positiva ou negativamente].

A magnitude do beta descreve a intensidade do impacto de um risco sistemático sobre os retornos de uma ação.


Gitman (1997: 222) define que "O modelo de formação de preços de ativos de capital (CAPM) associa o risco não-diversificável e o retorno de todos os ativos." Ele informa que, na plotagem gráfica, o CAPM estabelece o SML (*Security Market Line*), sendo que esta, na definição do autor, "Será, com efeito, uma reta contínua. Ela reflete para cada nível de risco não-diversificável (beta) o retorno exigido no mercado." (Gitman, 1997: 226).

_

⁷ COV = Covariância

⁸ VAR = Variância

Gráfico 1: Security Market Line

Fonte: (Gitman, 1997: 226)

A partir das explicitações decorridas, pode-se adotar um exemplo genérico para entendimento geral do modelo CAPM. Suponhamos que os dados sejam:

- Taxa livre de risco. Neste caso, podemos chamá-la de ativos que não apresentam risco, como uma aplicação em títulos do governo, no exemplo 15% a.a.;
- Risco não-diversificável, b=1,2;
- Rendimento esperado pelo mercado E(Rm) = 17% a.a.

Com os dados fictícios acima, na equação do CAPM, teremos:

$$E(Rj) = Rf + [E(Rm) - Rf)]bj$$

a) $E(Rj) = 15\% + [(17\% - 15\%)]*1,2$
b) $E(Rj) = 17,4\%$

De modo geral, o exemplo acima define que o custo de capital é de 17,4%, ou seja, o retorno mínimo exigido por um acionista, caso ele venha a investir em uma determinada organização que apresente a equação referida.

2.5 Custo de Capital de Terceiros

2.5.1 Definições conjuntas

Em uma organização, os acionistas podem optar em financiar seus projetos através da inserção de capital próprio ou de terceiros.

Na utilização de capital de terceiros, as partes envolvidas serão constituídas através de um credor, o detentor do capital, e um devedor, o tomador da quantia necessitada. Por esta relação de dependência, não diferentemente do capital próprio, o capital de terceiros terá certo custo, além da obrigação em devolver o capital emprestado, o tomador deverá compô-lo de mais uma remuneração, mais comumente chamada de juros.

Para Stewart (1990: 435),

O custo de capital de terceiros é o mais fácil de ser apurado. Ele é a taxa que uma companhia deveria pagar no mercado corrente para obter novos financiamentos de longo prazo. Sua melhor indicação é a taxa predominante nas negociações dos débitos da empresa no mercado público e aberto. Na inexistência de uma cotação para seus débitos, o custo de capital de terceiros de uma companhia pode ser apurado de forma aproximada pela taxa corrente que está sendo paga na aquisição de débitos de empresas com a mesma avaliação.

Dentre as fontes de financiamento de longo prazo existentes no Brasil, destacam-se as linhas de crédito do BNDES – Banco Nacional de Desenvolvimento Econômico e Social, por proporcionarem às empresas taxas ou custo de capital subsidiados e períodos de amortização longos.

2.5.2 Fórmulas e interpretações

A utilização de uma fonte externa de capital muitas vezes não é apenas uma opção da organização. Em muitos casos, a utilização se dá compulsoriamente, dados os diversos

problemas de liquidez que empresas, principalmente nacionais, encontram. Embora isto seja fato, existe a possibilidade de aquisição de capital de terceiros motivado por uma estratégia voltada ao melhor custo, ou seja, a redução do custo com benefício fiscal, que diminui o custo da dívida.

O benefício fiscal constitui em um artifício permitido às empresas na dedução da base tributada para o imposto de renda mediante a comprovação do pagamento de juros por empréstimos. Este procedimento representa um ganho real para as organizações contratantes de empréstimo.

Custo Líquido da Dívida = Custo Bruto da Dívida x (1-T)

onde T equivale à alíquota de imposto.

Vale ressaltar que o benefício pode ser conveniente até um determinado volume de dívida contraída, podendo este assumir tamanho vulto que passe a ser arriscado o bastante, aumentando diretamente o custo direto da dívida.

2.6 Estrutura de Capital

2.6.1 Definições conjuntas

A evolução dos estudos sobre a estrutura de capital nas organizações transcendeu décadas, e evoluiu em sua conceituação. Em primeira instância, o trabalho de Modigliani e Miller (1958) explicitava que, qualquer que fosse a composição do capital de uma organização - próprio ou de terceiros - em nada afetaria o valor da empresa. Tal inferência traduzia que não importava o tipo de financiamento que a organização optasse, pois o valor não se alteraria. Algumas premissas importantes foram consideradas para que se chegasse a esta conclusão, principalmente a ausência do risco de falência, a não incidência de impostos e a qualidade simétrica das informações.

Evolutivamente, a teoria proposta inicialmente foi alterada; assim, Modigliani e Miller (1963) aprofundaram os estudos, passando a considerar que existia um benefício tributário quanto à obtenção de empréstimos de terceiros. Este benefício se dava a partir do momento em que as despesas decorrentes dos juros pagos pela utilização de capital de terceiros poderiam ser deduzidas como despesas, reduzindo o valor de imposto a ser pago. Desse modo, o estudo dava margem, pelo benefício gerado, ao pensamento de que uma empresa tenderia a cem por cento de financiamento via dívida.

A partir de então, Miller - 1977 apud Miller1988 intensificou as análises em relação à estrutura de capital e aos fatores influenciadores que determinavam vantagens em algumas situações. Em seu estudo, avaliou a questão do imposto de pessoa física e observou que toda a renda originada através de um título correspondia a juros e que sua tributação ocorria semelhantemente à da renda pessoal, ou seja, em comparação ao ganho de capital extraído através da remuneração das ações, existia uma diferenciação de taxa de imposto. Por conseguinte, o autor concluiu que a dedutibilidade dos juros favorecia o uso de financiamento via títulos de dívidas, mas o tratamento tributário mais favorável do endividamento das ações reduzia a taxa de retorno exigida das ações, favorecendo o financiamento via capital próprio.

Pela importância dada ao fator estrutura de capital, outros estudiosos aprofundaram os estudos iniciados por Modigliani e Miller, em 1958. Por exemplo, Ross em 1977 (Ross, Wasterfield e Jaffe – 2002) introduziu em sua análise uma variável muito importante, o custo de falência. Desta forma, reconheceu que havia, efetivamente, um benefício gerado pela capitação de terceiros, dado os benefícios fiscais. Admitindo assim, que isso geraria uma pressão sobre a empresa, uma vez que os juros devidos constituem obrigações. Por se tratar de uma dívida, a empresa se expõem a um risco, que pode ser maior ou menor, intrinsecamente ligado à capacidade ou não de honrar seus compromissos.

2.6.2 Relação entre estrutura, custo e risco

Permeando os benefícios gerados pela captação do capital de terceiros, existem alguns pontos fundamentais na elevação do grau de alavancagem. Neste aumento, a fonte detentora do capital "credor" certamente identificará o aumento do risco de falência e, assim, a trajetória do aumento do custo do capital de terceiros virá por conseqüência garantir tal posição. Além disso, na falta de geração de caixa para pagamento dos juros, o acionista deverá sacar de seu benefício, a fim de prover a quitação dos recursos tomados. Desta forma, tal situação coloca a organização em uma dualidade de conceito, em que, de um lado está o benefício da dívida e, de outro, está a questão do endividamento como ameaça à perpetuidade dos negócios.

Para Brigham e Houston (1999), o risco mais alto tende a diminuir o preço da ação, mas uma taxa de retorno mais alta a faz aumentar e então se tem a denotação da estrutura ótima de capital, que consiste no equilíbrio entre risco e retorno, a fim de prover a maximização do preço da ação. Contudo, é evidente que a observação consciente na formação da estrutura do capital de uma organização é fundamental para a alta performance da companhia.

Ross, Wasterfield e Jaffe (2002) trazem a definição de que há fatores compensadores na utilização de uma determinada estrutura de capital, mas somente se o valor da empresa aumentar. Ao comparar as estruturas possíveis de capital para uma organização, o autor evidencia que a alavancagem financeira proporciona um aumento gradativo no lucro por ação, que vem atrelado a uma elevação do risco, algo que impacta tanto o capital de terceiros quanto o custo do capital próprio, pois o capital próprio é mais arriscado do que o de terceiros; ao ser o último a ter sua necessidade satisfeita, sofre influência consecutiva, caso haja elevação do risco.

Em termos gerais, a falência corresponde à dificuldade financeira extrema, a qual resultaria no inadimplemento das dívidas com credores. Se houver uma elevação do risco em determinada situação, provocado pela percepção de dificuldade no pagamento das obrigações, o benefício gerado pela questão fiscal passa a ser suplantado pelo aumento dos custos de

capital originados pela elevação do risco. Esse pressuposto compreende toda estrutura de

custo que onera empresas nesta situação e, desse modo, os custos indiretos de dificuldades

financeiras, ou seja, todos os incrementos ocasionados pela falta de credibilidade no mercado,

passam a se fazer presentes na organização.

Em seus estudos, Ross, Wasterfield e Jaffe (2002) definem que não existe uma regra

prática para definir que uma determinada empresa deverá manter-se de uma forma

preestabelecida em relação à sua estrutura de capital. Porém, há evidências de diferenciação

entre endividamento nos diversos setores, levando ao entendimento da existência de estruturas

ótimas de capital.

Ressalta-se que a prudência na consideração das fontes de capital é um fator crítico no

sucesso de uma organização. A definição da estrutura ótima do capital não segue uma regra

preestabelecida, e consiste na equiparação e observância de diversos fatores que, ponderados

entre si, maximizarão ou não o valor da empresa.

No movimento da estruturação adequada do capital de uma organização, Gitman

(1997) propõe que a alavancagem financeira se dá através do uso de ativos e recursos com um

custo fixo.

A partir da elaboração destes pressupostos, Gitman (1997: 427) retrata que a

alavancagem financeira se traduz pela capacidade de uma organização, através dos encargos

financeiros gerados pelo endividamento, maximizar os efeitos da variação do lucro, diante da

redução dos impostos, em relação à variação do lucro por ação, conforme demonstrado:

GAF=variação percentual no LPA

variação percentual no LAJIR

onde:

GAF - Grau de alavancagem financeira

LPA - Lucro por Ação

LAJIR - Lucro antes dos juros e impostos

24

No cenário organizacional, o administrador certamente deverá ser o mais capacitado possível no que se refere a combinar uma porção adequada de risco, a fim de proporcionar a maximização do valor de uma organização. Ele deve levar em conta que a devida combinação do risco e de outros fatores poderá ou não contribuir para tornar uma empresa mais valorizada. Em um cenário mais trágico, o risco pode provocar até mesmo a falência.

Para Brigham e Houston (1999: 450) a definição do risco pode ser dividida em dois grupos:

- a) "O risco de negócio, que é o grau de risco das operações da empresa, se esta não utiliza capital de terceiros."
- b) "O risco financeiro, que é o risco adicional para os acionistas decorrente da decisão de utilizar capital de terceiros."

Observamos que as evidências de risco retratam uma condição de aceitação ou não pela parte envolvida. Muitas vezes, as decisões de captação de empréstimos podem acelerar a maximização de valor para uma determinada organização, uma vez que adição de dívida através de custos mais interessantes pode reduzir o custo médio ponderado de capital. Entretanto, a adição de capital de terceiros pode resultar em uma inversão do benefício e sinalizar uma necessidade contínua e crescente, fazendo com que a percepção de falência surja, e o componente risco seja incontrolável. Neste caso, o valor da empresa estaria comprometido.

Ross, Wasterfield e Jaffe (2002: 346) ao estudarem os custos das dificuldades financeiras, verificaram que "A possibilidade de falência exerce um efeito negativo sobre o valor da empresa. Entretanto, não é o risco de falência em si que reduz o valor. Na verdade, são os custos associados à falência que reduzem o valor."

Para Ross, Wasterfield e Jaffe (2002), são três as classes de custos inerentes em uma organização que podem, quando relacionadas à possibilidade de ocorrência de dificuldade financeira, alterar o valor de uma organização:

a) Custos diretos de dificuldades financeiras

O fato de uma empresa passar por situações de dificuldade financeira, em muitos casos, são obrigadas a entrar em processos de liquidação ou, ainda, em processos de reorganização, alocando recursos para consultorias, pagamentos diversos e honorários, a fim de promoverem os acertos e ajustes necessários. Os custos associados à este grupo são definidos como custos diretos das dificuldades financeiras.

b) Custos indiretos de dificuldades financeiras

No momento em que uma empresa atravessa um período crítico, decorrente de dificuldades mais específicas de geração de caixa, diversos problemas são acarretados. Na falta de recursos financeiros, toda a capacidade de administração organizacional passa a ficar comprometida. Negociações outrora feitas em posições vantajosas com fornecedores, clientes e outras partes interessadas, passam a ser suprimidas pelas instabilidades geradas pela falta de recursos. Neste caso, a organização passa a se tornar refém de posições externas à sua vontade e ao desejo dos administradores. Tais alterações geram custos adicionais, denominados indiretos.

c) Custo de Agency – Teoria da Agência

A teoria da agência se estabelece amparada pelos estudos de Jensen (1986), que aborda a dualidade de interesses em uma organização. A teoria da agência trata do relacionamento entre as partes principais, do ponto de vista de controle, em uma empresa.

No decorrer de seus estudos, Jensen (1986) passa a observar que, se houver uma busca incessante de maximização da utilidade de ambas as partes, nem sempre o resultado será a maximização das duas partes por igual. Poderá haver o surgimento de uma onda contrária, em que nem sempre o agente maximizará o valor para o controlador, incidindo, assim, em custo de agência.

De acordo com Stulz (1990), dois são os tipos de problemas que podem ser detectados em organizações em fases diferentes de suas vidas, maturidade e crescimento: o sobre-

investimento e o sub-investimento, respectivamente. No primeiro caso, os administradores passam a aplicar recursos em projetos de baixa atratividade e no segundo caso, no momento da necessidade eminente de investimentos promissores, faltam recursos suficientes para isto. Assim, muitos são os defensores do endividamento como forma de racionalização do emprego de recursos em projetos comprovadamente maximizadores de valor, havendo então influência negativa quando faltam recursos para investimento em projetos de alta performance.

2.6.3 Estrutura ótima de capital

Autores como Brigham e Houston (1999) compactuam com a tendência científica de que existe uma estrutura de capital adequada, na qual é possível compor o capital de uma empresa com recursos próprios e de terceiros.

Damodaran (2001) também admite em seu estudo a posição de uma estrutura ótima de capital, que leve em conta o contexto de cada empresa, não havendo uma regra generalista. Para ele, é possível avaliar que a inserção de capital de terceiros em uma determinada organização deverá contribuir para a maximização de seu valor.

Como vemos, as decisões científicas abordadas ao longo dos anos evoluíram, convergindo para uma visão concordante de que existe uma estrutura de capital adequada, pela qual empresas podem se beneficiar, reduzindo o seu respectivo custo de capital e, assim, gerando valor.

Para Copeland e Weston (1992), a utilização de capital de terceiros gera a visão de alavancagem que, em linhas gerais, é o valor total da dívida em relação ao total dos ativos. A alavancagem não é teórica e definidamente estática, pois existe uma variação entre níveis de endividamento entre as empresas.

Para Brigham e Houston (1999: 449), a opção pelo *mix* das fontes de capital próprio e de terceiros condiciona a organização a benefícios e malefícios. Entre os benefícios, está o fato de que o capital de terceiros proporcionam uma vantagem para fins de impostos.

Um segundo benefício refere-se ao fato dos detentores da dívida, por possuírem um retorno fixo, permitirem ao acionista o acúmulo dos lucros gerados, não havendo necessidade de partilha.

Os principais autores que defendem a existência de uma estrutura de capital ótima também a chamam de estrutura alvo. Brigham, Gapenski e Ehrhardt (2001) em um estudo de caso abordam a questão da estrutura de capital alvo como sendo a melhor estrutura para uma organização, traduzindo em maximização do valor da empresa.

Em termos gerais, a estrutura de capital alvo, ou ainda, ótima, seria a que possibilitasse o encontro do melhor ponto entre as variáveis, ocasionando uma geração de valor máxima para determinada empresa. Neste exemplo, os autores sugeriram que a melhor estrutura de capital fosse aquela que maximizasse o preço da ação e, consequentemente, o valor da empresa seria aumentado.

Assim, o exemplo abaixo evidencia esta análise:

Tabela 1: Demonstração das variáveis da estrutura ótima de capital

Valor da dívida D, (\$)	Kd Custo Capital Terceiros	Ks Custo Capital Próprio	Valor das ações S, (\$)	Valor da Empresa V, (\$)	Preço da ação Pó	D/V	WACC
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
-	-	12,0%	\$20.000	\$20.000	\$20,00	0,0%	12,0%
2.000	8,0%	12,2	18.885	20.885	20,89	9,6	11,5
4.000	8,3	12,6	17.467	21.467	21,47	18,6	11,2
6.000	9,0	13,2	15.727	21.727	21,73	27,6	11,0
8.000	10,0	14,0	13.714	21.714	21,71	36,8	11,1
10.000	12,0	15,2	11.053	21.053	21,05	47,5	11,4
12.000	15,0	16,8	7.857	19.857	19,86	60,4	12,1
14.000	8,0%	19,0	3.158	17.158	17,16	81,6	12,3

Fonte: Brigham, Gapenski e Ehrhardt (2001: 538)

Este exemplo é muito útil ao evidenciar o montante exato de capital próprio, de terceiros e seus respectivos custos, capazes de proporcionarem um maior valor para a empresa. Qualquer outra combinação não proporcionaria o maior valor, embora fossem também positivos.

A estrutura ótima de capital não é estática. Não é possível defini-la como um ponto específico. Ela se altera de tempos em tempos, de empresa para empresa. O desafio constante dos executivos deve centrar-se em desempenhar gestão altamente eficiente, em inferir sobre o ponto ótimo de capital e custo, trazendo, efetivamente, valorização para a organização.

2.7 Economic Value Added⁹ (EVA®)

2.7.1 Definições consolidadas

Apesar dos diversos mecanismos que se propõem a auxiliar na tomada de decisão, a nomenclatura valor sempre permeou os assuntos de finanças. Através de Modigliani e Miller (1958), desde os primeiros pressupostos até os dias atuais, o valor, como forma de indicador para a tomada de decisão, tem se tornado cada vez mais importante, sendo disseminado por todo o mundo.

Neste sentido, surge, na década de 90, o chamado EVA® - *Economic Value Added*, instituído pela consultoria Stern Stewart & Co. Trata-se de uma ferramenta para apurar a criação de valor levando em consideração o custo do capital e as variáveis operacionais.

O EVA® veio ratificar os objetivos primordiais para qualquer organização, sendo que, em um primeiro momento, a empresa, em um cenário capitalista, tem como principal objetivo a maximização da riqueza de seus acionistas e, em segundo lugar, a constatação de que o retorno de um determinado investimento deverá ser superior ao custo de capital empregado.

⁹ Economic Value Added – Valor Econômico Adicionado

Para a Stewart (1990:436) "Por definição, o aumento sustentado no EVA® resultará

no aumento de valor de mercado da companhia. Performances contínuas já estão refletidas no

preço da ação. E o contínuo crescimento no EVA® traz contínuos crescimentos na riqueza do

acionista."

Frezatti (1998: 60), por sua vez, considera que, "[...] é evidente que durante muito

tempo a grande preocupação dos autores estava restrita a contribuições conceituais, sem se

ater à aplicação das mesmas, o que dificultou a sua aceitação e propagação. Atualmente a

visão mais pragmática permite a aplicabilidade, discussão e mesmo o aperfeiçoamento da

metodologia."

Na abordagem técnica sobre o valor adicionado, diversos autores propõem que o

EVA® provém de um conceito anterior, no caso, o lucro residual. Para Garison e Noreen

(2001: 399), "[...] lucro residual é o lucro operacional líquido obtido por um investimento

acima do retorno mínimo exigido sobre seus ativos de produção".

Neste sentido, Rappaport (1998) concorda que o modelo apresentado pela consultoria

Stearn & Stewart Co. corresponde a uma segunda versão sobre o lucro residual, ou seja, o

modelo EVA® é uma derivação do lucro residual.

No sentido de caracterizar a origem do EVA®, não se pode desconsiderar o Lucro

Residual, que gerou tal ferramenta. A principal diferença entre eles decorre dos sucessivos

ajustes promovidos no EVA®, que permitem construí-lo de forma a moldar os dados

contábeis, deixando-os mais próximos do valor econômico.

Portella (2000: 14) conclui que,

O lucro residual é um importante instrumento de mensuração porque deixa claro que a

companhia deve se preocupar não só com o crescimento (tamanho) de seus lucros, mas

também com o retorno que proporciona sobre o capital empregado. Entretanto, concentrar-se

somente no crescimento dos lucros pode significar destruição de valor para os acionistas se os

retornos oferecerem taxas menores que as do custo de capital, enquanto que auferir grandes retornos sobre uma base de capital empregado pequena pode significar oportunidades

perdidas.

30

Para Ehrbar *et al* (1999: VII), "Em sua forma mais fundamental, EVA® (valor econômico agregado ou adicionado) é a simples noção de lucro residual. Ou seja, para que investidores realizem uma taxa de retorno adequada, o retorno deve ser grande o suficiente para compensar o risco. Assim, o lucro residual é zero se o retorno operacional de uma empresa for apenas igual ao retorno exigido em troca do risco."

Ainda na conceituação do EVA® como ferramenta de análise de desempenho, Anthony (1984: 344) atuou decisivamente na conceituação do *Residual Income* – Lucro Residual, uma avaliação do resultado sob a ótica da superação do custo do capital empregado. Para ele, "O custo de capital é obtido mediante a multiplicação do valor dos ativos empregados por uma dada taxa."

Embora tenha sido nos últimos anos extremamente utilizado, o EVA® não se constitui em uma novidade, uma vez que o conceito primário de tal ferramenta já havia sido comentado por Marshall *apud* Copeland, Koller e Murrin (2002: 147): "O que resta de seus lucros [do proprietário ou administrador] após a dedução dos juros sobre seu capital à taxa em vigor pode ser considerado como sua remuneração pela realização da administração."

Frezatti (1998: 57) evidencia que o modelo EVA®,

Embora não seja novo em termos de concepção, haja vista a presença de tais conceitos na abordagem do controle gerencial da General Electric, na década de 50, por exemplo, o tema tem sido tratado de maneira pouco entusiástica. Isso ocorre, principalmente, pelo fato de serem requeridos critérios que podem trazer diferentes interpretações, o que faz com que muitos profissionais não se sintam confortáveis frente à possibilidade de auditar e repetir tais fenômenos de maneira a não produzir distorções.

Ricardo (1982: 222) foi um dos primeiros a fazer referência ao Resultado Econômico Residual, no início do século XIX, ao relatar que,

Algumas minas de carvão, embora vantajosamente localizadas, não podem ser exploradas por serem pobres. A produção não compensa os gastos. Elas não proporcionam nem lucro nem renda. Existem algumas cuja produção proporciona o estritamente necessário para pagar o

trabalho e repor, conjuntamente, com os lucros correntes, o capital empregado na sua exploração. Eles proporcionam algum lucro para quem explora, mas não proporcionam renda para o proprietário.

Para Stewart (1990: 118) o EVA® é "[...] uma medida de lucro residual onde o custo do capital é subtraído do lucro operacional gerado pelos negócios."

Com a criação do EVA®, seus idealizadores introduziram uma métrica não inédita. No entanto, com esta ferramenta, a gestão de uma organização passa a ser medida como passível ou não de gerar valor. Até então, os inúmeros indicadores de desempenho utilizados evidenciavam uma perspectiva de crescimento ou retração, dissociada do custo de investimento.

Se resgatarmos os conceitos mais primordiais do capitalismo, veremos que este só se confirma com a geração do lucro e, mais adiante, veremos diversos teóricos de finanças absorvendo e desenvolvendo o conceito da maximização do lucro. Para Yamamoto (1997), a aplicabilidade fundamental do EVA® consiste no fato de mensurar a criação de valor. Na mesma perspectiva, Copeland *et al* (1995) confirmam em suas pesquisas que o mais significativo, em medida de desempenho, é a criação de valor.

Damodaran *apud* Copeland *et al* (1995: 149) menciona que "Se os objetivos das finanças consistem em maximizar o valor da empresa, é necessário que o relacionamento entre decisões financeiras, a estratégia corporativa e o valor da empresa esteja delineado, definido."

Antes de adentrarmos na conceituação técnica do EVA® e em suas implicações estruturais, esclarecemos que, ao abordarmos o conceito de valor, este não está diretamente relacionado ao lucro auferido, mas sim ao quanto deste lucro, após descontar-se o custo do capital, pode ser traduzido em valor adicionado.

Pelo advento da ferramenta EVA® ser relativamente nova em comparação aos tradicionais modelos de medida de performance, a maioria das empresas, principalmente no cenário nacional, adotam variáveis do lucro contábil como instrumento para medir o

desempenho de uma organização, como lucro por ação, retorno sobre o investimento, retorno sobre o ativo. Mas, conforme mencionado, tais instrumentos por si só não posicionam as empresas no caminho mais adequado para a tomada de decisão, uma vez que não consideram, efetivamente, a criação de valor ao acionista e, desta forma, podem induzir a decisões não pertinentes ou até incorretas.

Para Hendriksen & Breda (1999: 183), "O economista escocês Adam Smith foi o primeiro a definir o lucro como sendo o montante que poderia ser consumido sem reduzir o capital."

Para Stewart (1990: 4), "O EVA é uma medida de performance financeira que captura, mais que qualquer outra, o verdadeiro lucro econômico da empresa. É também a medida de performance mais relacionada com a criação da riqueza do acionista durante todo o tempo."

2.7.2 Fórmulas e interpretações

Contudo, o modelo EVA® pode ser apresentado com a seguinte fórmula:

EVA® = (r-c)* Capital Investido

ou

EVA® = $RODIR - c \times Capital Investido$,

em que:

r = taxa de retorno sobre o capital investido;

c = custo de capital;

Capital Investido = Soma dos recursos totais empregados na companhia

RODIR = Resultado operacional da organização deduzidos os impostos

Para Copeland, Koller e Murrin (2002: 148) a definição do lucro econômico pode ser amparada pela fórmula:

Lucro econômico = Capital investido (ROIC – WACC) "Em outras palavras, o lucro econômico é igual à diferença entre o retorno sobre o capital investido e o custo do capital multiplicado pelo volume de capital investido",

em que:

Capital investido = Capital de giro operacional + instalações, planta e equipamentos + outros ativos;

e ainda:

ROIC = NOPLAT/Capital Investido

NOPLAT = Lucro Operacional Líquido menos imposto ajustados

WACC = Custo médio ponderado de capital

Uma das principais defesas dos adeptos do EVA® gira em torno da questão em que, mesmo quando uma empresa informa em seus resultados a geração de lucro contábil, o fato é que, na realidade, a organização pode estar com resultado econômico negativo, ou seja, destruindo valor, uma vez que, nos conceitos contábeis, não há relação direta com o montante de capital investido e o seu respectivo custo.

Na estruturação de um modelo de mensuração do desempenho, as evidências convergem para que, principalmente por motivos fiscais, as organizações apresentem seus resultados e que as análises sejam amparadas em questões contábeis. O surgimento de um modelo econômico estruturado não visa substituir os modelos já consagrados uma vez que possuem diferenciação específica. O modelo EVA® tem como principal objetivo municiar os controladores de organizações a tomarem decisões eficazes, não destinando recursos e esforços à atividades que não caracterizem em geração concreta de valor para a organização.

O EVA e seus componentes, custo de capital principalmente, devem ser utilizados na priorização de projetos em uma organização, pois mede a questão de retorno mínimo exigido por um acionista e demonstram o que sobra além do pagamento do custo pela utilização de um determinado montante de capital.

O lucro econômico constitui uma medida eficiente na estruturação de uma organização que vise à perpetuidade de suas operações. Suas aplicabilidades e funções devem estar, de forma clara, ligadas ao planejamento estratégico da organização, uma vez que em momentos de lucro econômico negativos, de destruição de valor, ações rápidas e precisas devem ser tomadas, a fim de reverter o rumo de insucesso e propor uma nova rota de crescimento. Ao prever uma reestruturação, os executivos e controladores de uma determinada organização deverão promover alterações na estrutura de capital, nas fontes alternativas de recursos, na escolha de projetos diferenciados e em outras variáveis que, direta ou indiretamente, possam alterar ou influenciar o EVA® da organização.

Desta forma, no comportamento voltado para a estratégia de geração de valor, as organizações irão se deparar com situações opostas e importantes, quanto ao sentido de auferirem lucro contábil positivo e lucro econômico negativo. Neste sentido, Hendriksen & Breda (1999: 202) afirmam que "O funcionamento eficiente de uma empresa afeta tanto a série de dividendos correntes quanto o uso do capital aplicado para a geração de fluxo de dividendos futuros".

Todos os investidores, mais particularmente os acionistas ordinários, preocupam-se com a eficiência da administração. Os investidores correntes podem tomar as providências necessárias para conseguirem novos administradores, caso os existentes não estejam tendo desempenho eficiente, ou podem instituir incentivos ou prêmios para recompensar os administradores eficientes. Os acionistas futuros procurarão julgar a eficiência da administração antes de aplicar seus recursos. Qualquer que seja o caso, a tomada de decisão basear-se-á em um julgamento de eficiência da empresa.

Com isso, é possível afirmar que um determinado investidor ponderará dois fatores na análise de um investimento, o risco e o retorno. Em uma mensuração este investidor estará amparando a sua decisão de investimento em detrimento de outra e, assim, como mencionado na conceituação de custo de oportunidade, a alternativa de investimento melhor avaliada entre as muitas descartadas formará o custo de oportunidade. Em outras palavras, conforme apontado por Hendriksen & Breda (1999), o investidor espera, no mínimo, o retorno tido

como possível no investimento escolhido e passará a avaliar os administradores do capital que investiu.

Desse modo, diversos indicadores contábeis deverão ser analisados, como o Retorno sobre Ativo, Lucro por Ação e Retorno sobre o Patrimônio. Porém, os defensores do EVA® são categóricos em afirmarem que somente os indicadores contábeis não são suficientes para a gestão eficaz de uma organização, pois, uma empresa poderia apresentar resultado contábil satisfatório e, no mesmo sentido, em virtude à ponderação de capital e ao seu custo, resultado econômico negativo, caracterizando a destruição de valor.

Para Fernandes & Fernandes (1998:12),

Em países onde as ações das empresas apresentam-se no mercado de forma pulverizada, a análise do comportamento do EVA® apresenta uma correlação direta com o preço da ação, e nem poderia ser diferente, pois a análise do EVA® refere-se à análise de remuneração, o capital do investidor, proporcionando assim condições para o investidor vender ou comprar ações que lhes interessam, ocasionando um reflexo no preço da ação no mercado da bolsa de valores. (...) O valor do EVA® está evidentemente relacionado com o sucesso estratégico da empresa e o futuro de seu mercado.

Os autores destacam que o EVA® é uma ferramenta útil para medir o desempenho histórico de uma determinada organização, sinalizando a potencialidade inerente de geração ou não de valor.

Stewart (1990) é incisivo em sua crítica direta ao modelo contábil, principalmente ao fato de avaliar o crescimento do lucro contábil como medida de análise de performance. Para o autor, este critério de análise de desempenho pode ser colocado em dúvida quanto à sua eficácia, porque se pode dizer que, havendo o crescimento do lucro contábil, isto poderia se dar de maneira não criteriosa, adotando projetos de baixo rendimento ou inferiores em retorno ao seu respectivo custo de capital. Então, o crescimento de lucro seria desfavorável para uma determinada organização.

Objetivando trazer à luz uma evidência entre os indicadores de desempenho, o retorno sobre investimento e o lucro residual, Frezatti (1998) constitui uma comparação entre os dois indicadores, valendo-se de um modelo base e projetando diversas modificações nos valores de projeções em contas como:

- Volume de vendas
- Preços praticados
- Despesas com propaganda e publicidade
- Provisão para perdas com incobráveis
- Saldo do contas a receber
- Saldo de estoques
- Aumento do permanente

O objetivo da análise concentrou-se em avaliar como se comportariam os indicadores de desempenho de longo prazo, sejam em semelhanças ou em suas diferenças. Entre as sete contas que permitiram a simulação, apenas duas mostram-se incapazes de possuir ambigüidade entre os conceitos avaliativos. As cinco restantes poderiam ser analisadas quanto às suas semelhanças e diferenças, voltadas para o campo qualitativo. Frezatti chegou à conclusão de que o lucro residual, em situação de evidenciar uma posição deficitária ao investidor, mostrou-se mais eficaz do que o indicador de retorno sobre investimento.

O estudo do EVA® é retratado de forma sintética também por Santos (2005: 135), que afirma que "O Valor Econômico Agregado (EVA®) é um conceito desenvolvido pela Stern Stewart, no início da década de 1980, que recupera a idéia de lucro econômico (ou lucro residual). Trata-se de uma medida de desempenho que mede o valor criado por uma empresa, ou o valor adicionado ao patrimônio dos proprietários, em um único exercício." Então, teremos:

$$EVA$$
® = $COIt x (RCI - CMPC)$

COI – Capital Operacional Investido

- = Ativos Circulantes Operacionais
- (-) Passivos Circulantes Operacionais
- = Capital de Giro Operacional

(+) Ativo Imobilizado Líquido

+/- Saldo de Outras Contas de Longo Prazo (Outros Ativos – Outros Passivos)

= Capital Operacional Investido (COIt)

Retorno Sobre Capital Investido

"Calculado a partir da divisão entre o Lucro Operacional Ajustado (LOA $_{t+1}$), contabilizado no exercício (t+1), e o capital operacional investido (COIt) no início do

exercício (t)."

RCI = LOA(t+1) / COIt

"O lucro operacional ajustado (LOA $_{t+1}$) representa o lucro gerado nas operações da empresa,

independente de como ela é financiada. Seu objetivo é medir a geração de lucros dos ativos da

companhia, que é resultado das decisões operacionais de seus administradores."

CMPC - Custo médio ponderado de capital

Em uma abordagem promovida por Copeland, Koller e Murrin (2002: 169) o EVA® e

definido como;

EVA® = Capital Investido x (ROIC – WACC)

Ao sabermos que o capital investido se processa a partir do montante de recursos que

uma organização está disposta a empregar, sendo eles de próprios ou de terceiros, o retorno

sobre o capital investido avalia a performance desse aporte. E neste sentido, o retorno é

medido pelo quociente entre o resultado operacional da organização sobre o respectivo capital

investido, sendo, conforme Copeland, Koller e Murrin (2002: 168):

ROIC = NOPLAT (Lucro operacional líquido menos impostos ajustados)

Capital Investido

ROIC – Retorno sobre o capital investido

NOPLAT - Lucro operacional líquido menos imposto ajustados

38

O NOPLAT é antes de mais nada um resultado do lucro operacional ajustados aos impostos, com efeito, caixa, e peça fundamental no cálculo do EVA®, que veremos mais uma vez ao longo deste estudo. De acordo com Copeland, Koller e Murrin (2002: 166) "O lucro operacional líquido menos imposto ajustado (NOPLAT) representa os lucros operacionais depois de impostos da empresa depois de terem sido os impostos ajustados para valores de caixa.".

Na estruturação do NOPLAT para, finalmente, chegar-se ao EVA® existem variáveis importantes nesta constituição e, assim, temos:

a) EBITA – Onde Copeland, Koller e Murrin (2002: 166) destacam,

O cálculo do NOPLAT parte do EBITA, a receita operacional antes de impostos que a empresa teria tido se estivesse livre do endividamento e da amortização do fundo comercial. Inclui todos os tipos de receita operacional, inclusive a maioria das receitas e despesas. Costumam ser excluídas receitas advindas de juros, despesas financeiras, resultados de itens interrompidos, resultados extraordinários e o rendimento de investimentos não-operacionais. A depreciação do ativo fixo deve ser subtraída do cálculo EBITA, mas não a amortização do fundo comercial.

b) Imposto sobre EBITA

No mesmo sentido, Santos (2005: 137) aborda o NOPLAT como sendo o lucro operacional ajustado e assim:

Receita Líquida de Vendas

- () Custos Operacionais
- () Despesas Operacionais
- (-) Depreciação
- = Lucro Operacional (LAJIR)
- () Impostos Ajustados sobre o LAJIR

- + Variação na conta de impostos diferidos no Exigível a Longo Prazo
- = Lucro Operacional Ajustado

E assim, o cálculo dos impostos ajustados sobre o lucro operacional seria:

Provisão para Imposto de Renda

- + Imposto sobre as Despesas Financeiras
- + Impostos sobre outras despesas não-operacionais
- Impostos sobre as receitas financeiras
- Impostos sobre outras receitas não-operacionais

= Impostos Ajustados

Para Damodaran (2001: 812), a visão do EVA® se dá através de uma superação em Dólar do valor criado de um determinado investimento, ou, ainda, de um portifólio. Assim, "O valor econômico adicionado (EVA) é uma medida de superação de valor em dólar criado por um investimento ou portifólio de investimento. Ele é computado como produto do 'excesso de retorno' obtido em um investimento ou investimentos e o capital investido neste investimento ou investimentos."¹⁰

Em sua contextualização, Damodaran (2001: 812), de forma mais detalhada, considera os fatores preponderantes para a construção real do EVA® "A Definição de valor econômico adicionado necessita de três componentes básicas para seu estabelecimento – o retorno de um determinado capital recebido pelos investimentos, o custo do capital destes investimentos e, o capital investido neles." 11

¹⁰ "The economic value added (EVA) is a measure of the dollar surplus value created by on investment or a portfolio of investment. It is computed as the product of the 'excess return' made on an investment or investments and the capital invested in that investment or investments."

¹¹ "The definition of economic value added outlines three basic inputs we need for its computation – the return on capital earned on investments, the cost of capital for those investments, and the capital invested in them."

Assaf Neto (2001: 230) expõe que "O indicador do valor econômico adicionado sinaliza se as estratégias financeiras implementadas agregam valor, reforçando a sua viabilidade e a continuidade do empreendimento".

Mais uma vez, é possível notar confluência entre os conceitos envolvendo o EVA®. A realidade retrata que a evolução da ferramenta, desde seu surgimento através do lucro residual, até a sua prática de forma mais comercial, não traz nada de surpreendente, entretanto condiciona a visão de negócio à geração de valor, propondo às organizações um novo modelo de gestão.

2.7.3 O EVA como ferramenta de análise gerencial

Como já mencionado, o EVA® teve seu aprimoramento constatado mediante a intensa necessidade dos administradores, principalmente, das grandes corporações em proverem explicações para o desempenho de suas respectivas organizações. Tal ferramenta evidenciou ao acionista a perspectiva real de geração de valor e, assim, possibilitou a correção de rumo, caso a estratégia escolhida não estivesse agregando valor à companhia.

Em consonância ao propósito central do EVA®, Carvalho (1999: 6) explica que o "O EVA® é um sistema gerencial financeiro que tem uma linguagem comum para todos os empregados através de todas as operações e permite que todas as decisões gerenciais sejam modeladas, monitoradas, comunicadas e compensadas em um simples e consistente caminho: sempre em termo de valor adicionado para o investimento do acionista." Em outros termos, o EVA® tem demonstrado a possibilidade de implantação mesmo em unidades de negócio de uma determinada empresa. Então, em uma dada empresa que possua, hipoteticamente, várias unidades distintas, essa ferramenta poderia ser utilizada para identificar e mensurar o valor adicionado ou destruído.

Para Atkinson *et al* (2000: 651), "As empresas estão começando a usar o valor econômico adicionado para identificar produtos ou linhas de produtos que não estão contribuindo, com sua parte, para o retorno da empresa, dado o nível de investimento que eles

exigem. As empresas também podem usar o valor econômico adicionado para avaliar as estratégias operacionais."

O EVA® possibilita, quando assumido como uma ferramenta propriamente de gestão, um caráter disciplinador dentro da organização. Isto ocorre pelo fato do controle sobre o que, direta ou indiretamente afeta o valor, ou ainda a construção de valor em uma companhia, ser monitorado diariamente, não apenas como um indicador mensal.

No cenário das organizações nacionais, é comum observar que empresas de diversos segmentos, principalmente de grande porte, têm estreitado conhecimento sobre a metodologia do EVA®, incorporando o conceito que a geração de valor é indispensável para a perpetuidade de uma organização.

Atkinson *et al* (2000: 650) abordam a remuneração por desempenho acima da média de forma particular. Para eles, "Nos anos em que o desempenho excede o objetivo do valor econômico adicionado, dois terços de todos os prêmios são colocados num banco de bônus, que é levado à frente e somente pago se o gerente atingir o objetivo do valor econômico adicionado nos anos subseqüentes."

A abordagem de gestão pelo desempenho é característica do EVA®. Essa ferramenta prioriza o valor pelo foco conciso da perpetuidade do negócio. Stewart (1990) demonstra algumas estratégias que organizações podem adotar para que haja a maximização do valor.

a. Aumento do valor sem acréscimo de mais capital: esta abordagem estratégica é tipicamente operacional e atua de forma a aprimorar o negócio já existente, ou seja, visa a maximizar valor através de uma melhoria de performance nas entradas, nas receitas e, na otimização do custo. Como o Lucro Ajustado é uma importante variável no modelo EVA®, sua maximização proporcionará, se forem mantidas as demais variáveis estáveis, custo de capital e volume de capital investido, um crescimento do lucro econômico e, por conseguinte, do valor.

- b. Ter crescimento no capital investido, proporcionando retorno superior ao custo deste capital: esta ação é diretamente relacionada ao retorno. Quando se tem um aumento do capital investido, para que exista a geração de valor, é necessário obter em qualquer investimento realizado retorno superior ao custo de capital investido. Assim, projetos ou ações que se destacam por baixo retorno devem ser deixados de lado, uma vez que reduzirão o valor em uma organização.
- c. Redução do capital investido: neste caso, a redução do capital deve se dar sem que haja perda no desempenho operacional. Isto pode ser evidenciado em empresas que atuam de modo concreto em ações à reduzirem os estoques, prazos de pagamentos e readequação dos recebimentos.

2.8 Os componentes do valor a partir do EVA®

Toda a estruturação do modelo EVA® não está centrada apenas na conceituação de uma nova ferramenta ou métrica para avaliação de desempenho, uma vez que constitui um modelo de gestão voltado para o acompanhamento periódico da criação do valor.

O EVA® pode trazer a informação de valor criado ou destruído, mas, para que seja formalizado o valor de uma companhia, são necessárias algumas abordagens mais avançadas.

Quando se trata de gerar valor, Copeland, Koller e Murrin (2002: 278) observam a necessidade de verificar a relação entre o lucro econômico gerado em um determinado período e o valor de uma empresa. Para eles, "Com a abordagem pelo lucro econômico, o valor contínuo não representa o valor da empresa após o período de previsão explícita. Em vez disso, é o valor incremental sobre o capital investido da empresa ao fim do período de previsão explicita."

Então, o valor total da empresa pode ser demonstrado da seguinte forma:

Figura 3: A composição do valor através do EVA®

Valor presente do
Capital investido lucro econômico
Valor = no início da + previsto durante o previsão período de previsão explícita

Valor presente do Valor presente do lucro econômico após o período de previsão explícita

Fonte: Copeland, Koller e Murrin (2002: 278)

 $VC = \underline{Lucro\ econômico_{T+1}} + \underline{(NOPLAT_{T+1})(g/ROIC_1)(ROIC_1-WACC)},$

WACC (WACC-g)

em que:

Lucro econômico normalizado no período

ano após o período de previsão explícita.

NOPLAT_{T+1} NOPLAT normalizado no primeiro ano

após o período de previsão explícita.

g Taxa de crescimento prevista para o ROIC

na perpetuidade.

ROIC₁ Taxa prevista de retorno sobre novos

investimentos.

WACC Custo médio ponderado de capital.

O termo VC refere-se ao valor contínuo, ou seja, ao último termo da equação do valor.

Em uma análise conceitual, o valor de uma empresa, pela abordagem do lucro econômico, consiste na composição do lucro econômico projetado no período explícito mais a projeção no período de perpetuidade dos investimentos que superam o custo de capital.

Na estruturação do modelo para o cálculo do valor de uma organização, algumas variáveis e conceitos devem ser considerados, e não apenas a estrutura do EVA® por si só.

Segundo Damodaran (2001: 813-814), para o início das apurações de valor, toda e qualquer análise deve levar em consideração o valor presente de um determinado montante em valores projetados ou estimados. A função do NPV (*Net Present Value*) — Valor Presente Líquido, retrata a condição de valor no tempo e, sendo positivo, indica superação de investimentos ou retornos sobre o seu respectivo custo. Assim, o valor de uma empresa pode ser expresso da seguinte forma:

$$t=n$$

$$NPV = \sum_{} EVAt/(1+kc)^{t}$$

$$t=1$$

$$t=\infty \qquad t=\infty$$

$$Valor da Firma = Capital Invetido* + \sum_{} EVAt/(1+kc)^{*} + \sum_{} EVAt/(1+kc)^{t**}$$

$$t=1 \qquad t=1$$

- * Momento projetado da empresa, previsão explícita
- ** Período de projeção não explícita

Modelo adaptado Damodaran (2001: 813-814)

Para Damodaran (2001: 813-814), "O valor de uma empresa pode ser escrito como a soma de três componentes: capital investido em ativos imobilizados, o valor presente líquido do valor econômico adicionado por estes ativos, e a expectativa do valor presente liquido do valor econômico adicionado promovida pelos investimento futuros." ¹²

¹² "[...] the value of a firm can be written as the sum of three components: the capital invested in assets-in-place, the present value of the economic value added by these assets, and the expected present value of the economic value that will be added by future investments."

3. PANORAMA DO SETOR AEROESPACIAL

O setor aeroespacial, mais especificamente o segmento de aeronaves civis, é marcado por uma indústria altamente desenvolvida, com capacidade tecnológica de vanguarda, proporcionando suporte às mais complexas exigências deste setor.

A indústria aeroespacial, no desenvolvimento e na fabricação de seus produtos, caracteriza-se por exigir elevados investimentos; utilizar intensivamente mão-de-obra altamente qualificada; integrar atividades multidisciplinares; ser geradora de tecnologias de ponta com rápida evolução; ser de difícil automação devido à pequena escala de produção; propiciar a transferência de inovações a outras indústrias; ter produtos que, além de complexos, são de alta densidade tecnológica e longo ciclo de desenvolvimento e produção.

Contudo, por se tratar de uma indústria que gera diferencial competitivo entre nações, dificilmente as grandes negociações que ocorrem neste setor, são vistas sem a presença dos governos destas nações, pois a necessidade de apoios e as alianças políticas são fundamentais para o sucesso e expansão do setor.

A projeção mundial das vendas e produção de aviões de porte médio (10 a 120 assentos) no período de 2001 até 2010 é de aproximadamente, cinco milhares de unidades, conforme Tabela 2. Os Estados Unidos respondem por cerca de 50% desse total e, a Europa, por 25%.

Tabela 2: Projeção em unidades de vendas de aviões de 10 a 120 acentos (2001 até 2010)

Nº Assentos	Estados Unidos	Europa	América Latina	África	China	Ásia	TOTAL
30 a 60	1.400	368	103	41	89	92	2.093
61 a 90	307	514	128	16	107	138	1.210
91 a 120	791	363	208	33	91	158	1.644
TOTAL	2.498	1.245	439	90	287	388	4.947

Fonte: Relatório Anual da Embraer, 2004.

O maior evento no cenário aeroespacial mundial ocorreu em 11 de setembro de 2001, quando o mundo se deparou com um dos mais sérios atentados terroristas, em que dois aviões americanos se chocaram com dois prédios no centro de Nova Iorque. Este foi um momento em que as indústrias aeronáuticas espalhadas ao redor do mundo tiveram que repensar seus planos de continuidade no negócio. Em primeiro lugar, o preço das ações destas companhias desabou, transformando cenários promissores em prejuízos. Os custos operacionais, como os de seguros, alavancaram-se de forma nunca antes vista, além das baixas procuras pelo transporte aéreo.

Estes impactos foram, inevitavelmente, conseqüências para a derrocada de diversas empresas no cenário mundial, fazendo com que o setor se rearranjasse, iniciando um processo de fusões e aquisições.

As alterações a que o setor aeroespacial foi submetido, modificou principalmente o seu tamanho, no qual pequenas e mais frágeis companhias foram excluídas ou incorporadas por outras organizações maiores. Com isso, as aeronaves passaram a ter um nível de ocupação maior.

O Gráfico 2 salienta a evolução da eficiência das indústrias do setor aeroespacial, passando a obter maior relação de ocupação de suas aeronaves. Isto se deu pela necessidade da otimização dos custos, frente aos mais diversos desafios competitivos.

3,000 2,500 2,000 1,500 1,000 2000 2002 2004 86 982 986 886 8 99 994 96 866 984

Gráfico 2: Receita em US\$ das empresas aéreas por passageiro por quilometro voado

Fonte: Monthly Handbook - JPMorgan - Janeiro/2006.

O setor de aeronaves sempre se mostrou altamente competitivo, em decorrência a alta especialização da mão-de-obra, do alto desenvolvimento tecnológico e dos custos operacionais extremamente onerosos. De acordo com uma evolução da lucratividade do setor mundial, conforme Gráfico 3, apesar de instabilidades constantes, até 2001, o setor apresentou, em média, posição favorável. Após 2001, o setor tem apresentado sucessivos déficits na lucratividade, sem demonstrar tendência real de reversão deste resultado.

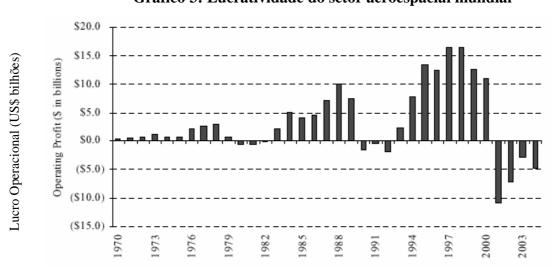


Gráfico 3: Lucratividade do setor aeroespacial mundial

Fonte: Monthly Handbook - JPMorgan - Janeiro/2006.

Em relação à adequação entre a produção, ou pedidos colocados nas indústrias, e as respectivas entregas, em uma evolução nos últimos 40 anos, é possível observar que não há

um descompasso muito agressivo entre as duas curvas, algo que evidencia pleno atendimento à demanda.

Total de pedidos Total de entregas

Gráfico 4: Pedidos e entregas em unidades de aviões no mundo

Fonte: Monthly Handbook - JPMorgan - Janeiro/2006.

Como é possível observar, o setor aeroespacial constitui-se de forma altamente peculiar. Ao mesmo tempo em que se mostra gigante, com faturamento total chagando próximo dos US\$ 298 bilhões em 2004, possui vulnerabilidades internas fortíssimas e por, ser altamente capitalizado, mediante aos fatores externos torna-se inevitavelmente refém.

Tabela 3: Receita líquida (US\$ milhões) do setor aeroespacial

	2003	2004	2005E	2006E
Alliant Techsystems*	\$2,309	\$2,679	\$3,087	\$3,292
Armor Holdings	365	980	1,641	1,922
BAE Systems	20,543	24,819	27,670	31,446
Boeing	50,485	52,513	55,493	64,646
Bombardier**	15,508	15,839	14,730	14,708
EADS	34,111	39,511	43,941	46,721
Embraer	2,154	3,441	3,938	4,344
Gencorp	348	499	587	619
General Dynamics	16,617	19,465	21,030	23,977
Goodrich	4,383	4,725	5,374	5,711
K&F Industries	343	353	383	403
L-3 Communications	5,062	6,897	9,432	11,981
Lockheed Martin	31,824	35,526	37,253	38,829
Northrop Grumman	26,206	29,733	30,549	31,752
Raytheon	18,109	20,245	21,857	23,231
Rockwell Collins*	2,542	2,930	3,445	3,842
United Technologies	31,034	37,445	42,614	45,968
Total	\$261,942	\$297,598	\$323,024	\$353,390

Fonte: Monthly Handbook - JPMorgan - Janeiro/2006.

O setor também se mostra consideravelmente distinto na sua geração de lucro, chegando a US\$ 12 bilhões em 2004.

Tabela 4: Lucro Líquido (US\$ milhões) do setor aeroespacial

	2003	2004	2005E	2006E
Alliant Techsystems*	\$147	\$156	\$170	\$181
Armor Holdings	11	81	133	147
BAE Systems	5	1,033	1,291	1,507
Boeing	1,536	1,872	2,713	2,983
Bombardier**	(85)	(85)	108	231
EADS	172	1,281	1,782	1,874
Embraer	139	380	455	440
Gencorp	22	(398)	(227)	(22)
General Dynamics	997	1,227	1,464	1,670
Goodrich	100	171	261	300
K&F Industries	41	(28)	19	51
L-3 Communications	288	382	503	579
Lockheed Martin	1,053	1,266	1,782	1,839
Northrop Grumman	757	1,066	1,344	1,492
Raytheon	535	439	944	1,148
Rockwell Collins*	277	323	400	460
United Technologies	2,236	2,683	3,169	3,601
Total	8,230	11,849	16,312	18,480

Fonte: Monthly Handbook - JPMorgan - Janeiro/2006.

Em síntese, o setor aeroespacial constitui-se em um gigante em fase de recuperação. Ainda com margens reduzida, em comparação aos demais setores da economia, na faixa de 4%, o setor tem se reorganizado.

O mercado de aeronaves no mundo mostra-se, no mínimo, desafiador. Centrado no contínuo desenvolvimento tecnológico, empresas deste setor devem estar focadas no desenvolvimento e aprimoramento de suas técnicas, além de contar com inserção contínua de altos vultos de capital. Desta forma, empresas neste segmento destacam-se pelo volume exportado, uma vez que necessariamente para suportarem os altos custos, dependem de novos mercados.

Em um cenário de médio e longo prazo, somente sobreviverão as empresas que se dispuserem a ter uma visão de eficiência e excelência. Neste setor não são mais toleráveis erros ou ineficiências, sejam eles tecnológicos ou operacionais.

4. A EMPRESA EM ANÁLISE

A construção deste trabalho, inicialmente, previu a conceituação teórica de argumentos econômico-financeiros que, assim, estarão sendo aplicados à prática, em uma empresa brasileira, a Embraer, tendo como foco a avaliação dos demonstrativos financeiros. Deveremos dedicar este capítulo na explicação mais detalhada sobre a empresa em questão.

A Embraer é uma empresa localizada em São José dos Campos, São Paulo. Possui cinco unidades fabris no Brasil, e escritórios e centros técnicos em países como China, Cingapura, Estados Unidos e França. A empresa vem se destacando no mercado aeroespacial pela sua determinação em atender o seu cliente de forma completa, visando a necessidade do cliente externo com as exigências proporcionadas pelos seus acionistas. Em suma, a Embraer é uma empresa que tem atuado no mercado aeroespacial, basicamente de duas formas: no fornecimento de aeronaves comerciais para empresas ao redor do mundo e no fornecimento de aeronaves para unidades de defesa, como o Exército Americano.

A Embraer nasceu em decorrência do plano do Governo Brasileiro em capacitar a indústria aeroespacial, na década de 40. O projeto, em seu início, consistia em construir uma base técnica capaz de avançar nos estudos aeroespaciais e, assim, tornar-se capaz de atender as demandas dos pólos mais desenvolvidos do mundo. Então, em 1946, foi criado o CTA (Centro Técnico de Aeronáutica), hoje conhecido como Centro Técnico Aeroespacial. Em 1950, passou abrigar o ITA (Instituto Tecnológico de Aeronáutica) e, em 1953, foi criado o IPD (Instituto de Pesquisa e Desenvolvimento).

No decorrer destes anos, diversos projetos foram iniciados no CTA. Na década de 50, iniciaram-se projetos como o Convertiplano, o helicóptero Beija-flor, o avião turboélice Bandeirante. Este último, iniciado em 1965, deu origem à criação da Embraer, em 19 de agosto de 1969.

As pesquisas iniciadas na metade do século XX permitiram à Embraer crescer no mercado nacional e despontar como empresa detentora de conhecimento específico também

no mercado internacional. A partir de 1974, ela passou a atuar no mercado internacional com a exportação do EMB 110 Bandeirante e do EMB Ipanema. Em 1976, com o EMB 121 Xingu, marcou sua época com o lançamento de uma aeronave pressurizada.

A Embraer é hoje a 4ª maior fabricante de aeronaves comerciais do mundo. Com mais de 3.600 aviões produzidos (2006), voando em 58 países e 16.500 funcionários (85% no Brasil) foi também, em 1999 e 2001, a maior exportadora brasileira e de 2002 a 2005 a segunda maior. Em 1999, a Embraer formalizou uma aliança estratégica com as maiores empresas aeroespaciais européias, que detêm hoje cerca de 20% de seu capital social. São elas: Snecma, EADS, Dassault Aviation e Thales. Isso facilitou a entrada em mercados mais fechados e competitivos. Seus primeiros aviões de sucesso no exterior foram o Bandeirante e o Xingú, turbo-hélices, que invadiram o mercado brasileiro e norte-americano em suas categorias e elevaram o nome da empresa como indústria internacional de aviação regional e comercial. Como a empresa estatal era deficitária, o governo federal resolveu leiloar a companhia num dos diversos leilões promovidos pelo BNDES e hoje é um grupo saudável, poderoso e muito lucrativo, num mercado extremamente competitivo.

Apesar do grande avanço marcado pela criação da Embraer, o acompanhamento das melhores e mais modernas práticas mundiais começou a se fazer presente no final dos anos 70, quando lançamentos como EMB 312 Tucano e EMB 120 Brasília e parcerias com empresas italianas Alenia e Aermacchi permitiram que a Embraer adentrasse em um novo patamar tecnológico. Entretanto, o avanço tecnológico não foi capaz de impedir uma forte crise financeira nos anos 90. Nesse momento, além de abandonar projetos importantes para o crescimento organizacional, a empresa teve a necessidade de reduzir, consideravelmente, o quadro de funcionários. Isto culminou com a sua privatização em 1994, que lhe trouxe novo fôlego.

A partir desse momento decisivo, com a união de duas sólidas culturas, a da engenharia e indústria, construída ao longo das décadas passadas e, a empresarial, que trouxe novas capacitações gerenciais e financeiras, a Embraer iniciou um processo de retomada do crescimento, impulsionada pelo projeto da família ERJ 145. Nos anos seguintes, com o lançamento da família EMBRAER 170/190, da aeronave executiva Legacy, dos produtos de

defesa na área de Inteligência, Vigilância e Reconhecimento (Intelligence, Surveillance and Reconnaissance - ISR) e do projeto ALX Super Tucano, a Embraer expandiu significativamente sua atuação no mercado aeroespacial, ampliando receitas e diversificando mercados. Desde 1995, ano seguinte à sua privatização, a Embraer exportou US\$ 17 bilhões em produtos e serviços, tendo sido a maior exportadora brasileira entre 1999 e 2001. Contribuiu, ao longo desses dez anos, com US\$ 6,6 bilhões para o saldo da balança comercial do País. Hoje, a Embraer é uma empresa líder no mercado de jatos comerciais de até 110 assentos.

A partir de 2004, importantes acontecimentos, tais como a entrada em operação do EMBRAER 170, primeira das quatro aeronaves da nova família de jatos comerciais EMBRAER 170/190, programa no qual vem sendo investidos cerca de US\$ 1 bilhão, a escolha da plataforma do ERJ 145 para o programa Aerial Common Sensor (ACS) do Exército e Marinha dos Estados Unidos, o lançamento da primeira aeronave de serie do mundo certificada para operar a álcool, o Ipanema, entre outros, firmam as bases de um desenvolvimento econômico e social próspero e sustentável. Em consonância com as exigências e características do sofisticado negócio aeroespacial, a ação empresarial da Embraer se apóia em cinco pilares - alta tecnologia, pessoas qualificadas, presença global, flexibilidade e intensidade de capital - que recebem contínuos investimentos, sempre voltados para a permanente e completa satisfação de seus clientes. Nessa satisfação está a origem dos resultados da Embraer e a consecução de seu propósito maior: a geração de valor para os seus acionistas.

Com o avanço tecnológico e o constante desafio dos custos crescentes, as empresas aéreas mundiais, e nesse contexto, a EMBRAER, têm se deparado com um cenário adverso, embora muitas foram as alterações propostas para o setor. Agora, o setor, em geral, tem apreciado o surgimento de empresas aéreas dedicando-se a atuarem em rotas curtas e com preço de passagem muito baixo. Neste sentido, há um crescimento contínuo na procura de aeronaves menores, com 50 ou 70 assentos, e neste ponto, a EMBRAER tem se destacado, uma vez que, habilitada neste portifólio, tem se tornado forte destaque no cenário da aviação mundial.

Na Tabela 5, é possível observar a evolução da EMBRAER diante seus principais concorrentes.

Tabela 5: Número de aeronaves entregues pela Embraer e concorrentes

Aircraft	2000	2001	2002	2003	2004	2005E	2006E
Bombardier							
CRJ 100/200	103	136	140	152	100	37	0
CRJ 700	2	29	50	50	64	63	38
CRJ 900	-	-	1	12	14	15	14
Subtotal	105	165	191	214	178	115	52
Embraer							
ERJ 135	45	27	3	14	1	2	0
ERJ 140	0	22	36	16	0	0	0
ERJ 145	112	104	82	57	87	49	13
EMB 170/175	0	0	0	0	46	65	55
EMB 190/195	0	0	0	0	0	11	55
Subtotal	157	153	121	87	134	127	123
Fairchild-Dornier							
328JET	33	29	8	0	0	0	0
Subtotal	33	29	8	0	0	0	0
Total	295	347	320	301	312	242	175

Fonte: Monthly Handbook - JPMorgan - Janeiro/2006.

A EMBRAER tem se despontado no cenário mundial pelo arrojo no desenvolvimento de projetos de alto valor agregado. Assim, outro nicho de negócio, no qual, a EMBRAER tem investido confere ao setor de defesa, e principalmente o Norte Americano, que em 2004, atingiu gasto globais de US\$ 400 bilhões.

Nos aspectos operacionais, a EMBRAER é composta por uma direção executiva, desmembrada do conselho de administração, a fim de garantir responsabilidades e atuações distintas entre as partes. Além disso, em linha com as necessidades intrínsecas ao pleno e constante acompanhamento dos processos operacionais, demonstrações financeiras e aspectos legais, é constituído um conselho fiscal.

5. PESQUISA E ANÁLISE DOS RESULTADOS

5.1 Apresentação dos resultados obtidos

Nesta etapa do projeto abordaremos as questões quantitativas da análise, envolvendo conceitos teóricos já discutidos concomitantemente ao estudo de caso da EMBRAER. O período escolhido na análise corresponde a 10 anos, ou seja, 1995 a 2004.

Como a empresa em análise possui negociação de ações em bolsa, os dados referentes ao preço de suas respectivas ações foram buscados a partir da BOVESPA, (www.bovespa.com.br). Além disso, fontes de dados como Relatório Anual da Embraer e Economatica foram utilizadas para o completo levantamento de informações como, resultado, balanço entre outros.

Com o objetivo de propor um conhecimento aprofundado dos principais números da Embraer, o próximo sub-capítulo explorou a avaliação da performance da empresa através do demonstrativo de resultado, balanço patrimonial e os principais indicadores, preparando a oportunidade para o desenvolvimento das análises propostas.

5.1.1 Demonstrativo do Resultado do Exercício

No decorrer dos anos, a EMBRAER encontrou no que tange ao resultado, uma rota de crescimento e a otimização da performance operacional, conforme Tabela 6. Isso deveu-se principalmente a questão da privatização da companhia que ocorreu em 1994, iniciando um processo estratégico conciso em redução dos custos e diversificação dos negócios, e a partir deste momento, a empresa começou a se destacar por excelente performance, principalmente no cenário mundial, tornando-se um expoente e condutor das tendências em seu respectivo segmento.

Tabela 6: Demonstrativo de resultado da Embraer – R\$ mil (1995-2004)

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Receita Liquida Operac	694.077	722.527	1.477.485	2.769.090	5.450.464	7.790.304	9.776.709	9.769.177	7.579.644	10.968.642
Custo Produtos Vendidos	561.352	571.755	1.082.541	1.985.877	3.871.415	5.363.741	5.712.091	5.413.650	4.867.787	7.314.650
Lucro Bruto	132.725	150.772	394.944	783.213	1.579.049	2.426.563	4.064.618	4.355.527	2.711.857	3.653.992
<u>Despesas Operac Proprias</u>	150.967	131.863	187.637	304.436	525.113	767.090	1.036.446	1.266.579	1.077.679	1.479.138
Despesas com Vendas	68.476	62.284	115.908	210.711	387.505	547.050	735.950	851.371	688.587	1.064.229
Despesas Administrativ	82.490	69.579	71.729	93.725	137.608	220.040	300.496	415.208	389.091	414.909
Lucro Operac EBIT	(18.241)	18.909	207.307	478.777	1.053.936	1.659.473	3.028.172	3.088.947	1.634.178	2.174.855
Resultado Financeiro	(206.030)	(333.545)	(260.743)	(47.989)	(379.883)	(318.055)	(679.646)	(1.104.191)	(638.561)	(779.765)
Outras Rec Desp Operac	(252.858)	124.009	(42.603)	_(136.000)	(41.659)	(93.302)	(150.425)	(357.962)	(200.687)	(309.202)
Equivalenc Patrimonial		-	-		(411)	2.249	1.023	1.731	168	<u>-</u>
Lucro Operacional	(477.129)	(190.626)	(96.039)	294.788	631.982	1.250.366	2.199.124	1.628.525	795.099	1.085.887
Resultado nao Operac	(128.273)	(40.439)	(163.999)	(12.002)	(51.025)	29.381	(52.967)	(5.768)	(53.213)	(696)
<u>LAIR</u>	(605.402)	(231.065)	(260.039)	282.786	580.957	1.279.747	2.146.158	1.622.757	741.886	1.085.191
<u>Provisao Impost de Rend</u>	(1.844)	1.162	(200.801)	20.660	111.292	419.580	653.791	670.073	288.191	356.950
IR Diferido	-	-		-	(256.906)	(102.776)	36.492	(127.479)	-	-
Partic/Contrib Estatut		-	-	29.235	59.306	123.041	143.559		-	<u>-</u>
Rever Juros s/Patr Liqui	-	-				153.837	256.412	415.064	226.160	627.353
Partic Acion Minoritar	2	-				8.095	6.745	8.469	1.958	9.239
Lucro Liquido	(603.561)	(232.228)	(59.238)	232.891	667.264	985.644	1.561.982	1.486.758	677.897	1.346.356

Fonte: Economatica

Ao compararmos o desempenho horizontal, ou comumente chamado de análise horizontal, temos:

Tabela 7: Análise horizontal da Embraer (1995-2004)

	1995	95/94	1996	96/95	1997	97/96	1998	98/97	1999	99/98	2000	00/99	2001	01/00	2002	02/01	2003	03/02	2004	04/03
Receita Liquida Operac	694.077	32%	722.527	4%	1.477.485	104%	2.769.090	87%	5.450.464	97%	7.790.304	43%	9.776.709	<u>25%</u>	9.769.177	0%	7.579.644	<u>-22%</u>	10.968.642	$\underline{45\%}$
Custo Produtos Vendidos	561.352	13%	571.755	2%	1.082.541	89%	1.985.877	83%	3.871.415	95%	5.363.741	39%	5.712.091	6%	5.413.650	-5%	4.867.787	-10%	7.314.650	50%
Lucro Bruto	132.725	393%	150.772	14%	394.944	162%	783.213	98%	1.579.049	<u>102%</u>	2.426.563	54%	4.064.618	<u>68%</u>	4.355.527	<u>7%</u>	2.711.857	<u>-38%</u>	3.653.992	$\underline{35\%}$
Despesas Operac Proprias	<u>150.967</u>	<u>-14%</u> .	131.863	<u>-13%</u>	<u> 187.637</u>	42%	304.436	<u>62%</u>	<u>525.113</u>	<u>72%</u>	767.090	46%	1.036.446	<u>35%</u>	1.266.579	22%	1.077.679	<u>-15%</u>	1.479.138	37%
Lucro Operac EBIT	(18.241)	88%	18.909	204%	207.307	996%	<u>478.777</u>	<u>131%</u>	1.053.936	<u>120%</u>	1.659.473	<u>57%</u>	3.028.172	82%	3.088.947	2%	1.634.178	<u>47%</u>	2.174.855	$\underline{33\%}$
LAIR	(605.402)	9%	(231.065)	62%	(260.039)	<u>-13%</u>	282.786	209%	<u>580.957</u>	<u>105%</u>	1.279.747	<u>120%</u>	2.146.158	$\underline{68\%}$	1.622.757	<u>-24%</u>	741.886	<u>-54%</u>	1.085.191	$\underline{46\%}$
Lucro Liquido	(603.561)	9%	(232.228)	62%	(59.238)	74%	232.891	493%	667.264	<u>187%</u>	985.644	48%	1.561.982	<u>58%</u>	1.486.758	<u>-5%</u>	677.897	<u>-54%</u>	_1.346.356	$\underline{99\%}$

Fonte: Economatica

O desempenho acima, mostrado principalmente pelo AAGR (Annual Average Groth Rate), indicador que retrata a variação média anual, informa-nos que o desempenho da organização em análise foi extremamente salutar, passando a ter um crescimento médio anual das vendas líquidas de 36%. Não obstante, com a otimização dos custos, o desempenho refletido no lucro foi extremamente considerável, tendo a partir do momento em que os resultados se tornaram positivos (1998 até 2004), demonstrado crescimento médio ao ano de 34%.

Para podemos avaliar melhor o desempenho de contas chaves no demonstrativo de resultado frente à evolução dos principais índices da economia, inclusive Dólar, conforme Gráfico 5, evidenciou-se por apresentar uma altíssima representatividade de suas vendas no mercado externo, cerca de 90%, o aumento da receita líquida em Reais acompanha de forma bastante acentuada a evolução da moeda Norte Americana.

3,50 gg 7 3,08 3,08 3,00 Pi 3,

Gráfico 5: Evolução da receita líquida da Embraer em R\$ bilhões em relação ao Dólar

Fonte: Economatica

A análise vertical também evidencia a saudável situação financeira da empresa no período pós-privatização.

Tabela 8: Análise vertical da Embraer (1995-2004)

	1995		1996		1997		1998		1999		2000		2001		2002		2003		2004	
Receita Liquida Operac	694.077	100%	722.527	100%	1.477.485	100%	2.769.090	100%	5.450.464	100%	7.790.304	100%	9.776.709	100%	9.769.177	100%	7.579.644	100%	10.968.642	100%
Custo Produtos Vendidos	561.352	81%	571.755	79%	1.082.541	73%	1.985.877	72%	3.871.415	71%	5.363.741	69%	5.712.091	58%	5.413.650	55%	4.867.787	64%	7.314.650	67%
Lucro Bruto	132.725	19%	150.772	21%	394.944	27%	<u>783.213</u>	28%	1.579.049	29%	2.426.563	31%	4.064.618	42%	4.355.527	45%	2.711.857	36%	3.653.992	33%
Despesas Operac Proprias	150.967	22%	131.863	18%	187.637	13%	304.436	<u>11%</u>	525.113	10%	767.090	10%	1.036.446	11%	1.266.579	13%	1.077.679	14%	1.479.138	13%
Despesas com Vendas	68.476	10%	62.284	9%	115.908	8%	210.711	8%	387.505	7%	547.050	7%	735.950	8%	851.371	9%	688.587	9%	1.064.229	10%
Despesas Administrativ	82.490	12%	69.579	10%	71.729	5%	93.725	3%	137.608	3%	220.040	3%	300.496	3%	415.208	4%	389.091	5%	414.909	4%
Lucro Operac EBIT	(18.241)	.3%	18.909	3%	207.307	14%	478.777	17%	1.053.936	<u>19%</u>	1.659.473	21%	3.028.172	31%	3.088.947	32%	1.634.178	22%	2.174.855	20%
Resultado Financeiro	(206.030)	-30%	(333.545)	46%	(260.743)	<u>-18%</u>	(47.989)	-2%	_(379.883)	-7%	(318.055)	4%	(679.646)	<u>-7%</u>	(1.104.191)	-11%	(638.561)	-8%	(779.765)	<u>-7%</u>
Outras Rec Desp Operac	(252.858)	-36%	124.009	17%	(42.603)	<u>-3%</u>	(136.000)	-5%	(41.659)	-1%	(93.302)	-1%	(150.425)	-2%	(357.962)	4%	(200.687)	-3%	(309.202)	<u>-3%</u>
Equivalenc Patrimonial		0%		0%		0%	:	0%	(411)	0%	2.249	0%	1.023	0%	1.731	0%	168	0%		0%
Lucro Operacional	(477.129)	-69%	(190.626)	-26%	(96.039)	<u>-7%</u>	294.788	11%	631.982	12%	1.250.366	16%	2.199.124	22%	1.628.525	17%	795.099	10%	1.085.887	10%
Resultado nao Operac	(128.273)	<u>-18%</u>	(40.439)	<u>-6%</u>	(163.999)	<u>-11%</u>	(12.002)	0%	(51.025)	-1%	29.381	0%	(52.967)	-1%	(5.768)	0%	(53.213)	-1%	(696)	0%
<u>LAIR</u>	(605.402)	-87%	(231.065)	-32%	(260.039)	<u>-18%</u>	282.786	10%	580.957	11%	1.279.747	16%	2.146.158	22%	1.622.757	17%	741.886	10%	1.085.191	10%
Provisao Impost de Rend	(1.844)	0%	1.162	0%	(200.801)	<u>-14%</u>	20.660	1%	111.292	2%	419.580	5%	653.791	7%	670.073	7%	288.191	4%	356.950	3%
IR Diferido		0%		0%		0%	:	0%	_(256.906)	-5%	(102.776)	-1%	36.492	0%	(127.479)	-1%		0%		0%
Partic/Contrib Estatut		0%		0%		0%	29.235	1%	59.306	1%	123.041	2%	143.559	1%		0%		0%		0%
Rever Juros s/Patr Liqui		0%		0%		0%	:	0%	:	0%	153.837	2%	256.412	3%	415.064	4%	226.160	3%	627.353	6%
Partic Acion Minoritar	2	0%		0%		0%		0%	:	0%	8.095	0%	6.745	0%	8.469	0%	1.958	0%	9.239	0%
Lucro Liquido	(603.561)	<u>-87%</u>	(232.228)	<u>-32%</u>	(59.238)	4%	232.891	8%	667.264	<u>12%</u>	985.644	13%	1.561.982	<u>16%</u>	1.486.758	<u>15%</u>	677.897	9%	1.346.356	<u>12%</u>

Fonte: Economatica

A análise vertical contribui para algumas conclusões valiosas para uma organização. A partir de sua consecução, o administrador pode mensurar as diversas despesas e receitas por uma participação de sua receita líquida, ou seja, se a performance é positiva ou não.

2004 2003 Lucro Liquido LAIR 2002 ■ Lucro Operacional Participação da Receita Líquida ■ Lucro Bruto 2001 ■ Custo Produtos Vendidos 2000 1999 1997 1996 1995 -100% 100%

Gráfico 6: Evolução percentual da análise vertical (1995-2004)

Fonte: Economatica

A evolução apresentada no Gráfico 6 fortifica os valores intrínsecos na análise vertical, onde a EMBRAER, amargou períodos deficitários, porém, condicionada a uma recuperação, chegando em 2004, a uma margem líquida de 12%.

5.1.2 Balanço Patrimonial

A exposição do balanço patrimonial, em Reais por mil e corrigidos pela inflação do período, consiste na observância das principais alocações de recursos que ocorreram ao logo dos anos, fontes de financiamentos e ainda se estas alterações refletiram em determinantes positivas para a performance da organização.

Tabela 9: Balanço patrimonial da Embraer – R\$ mil (1995-2004)

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Ativo Total	2.226.022	2.114.771	2.554.032	3.626.173	5.603.138	7.789.852	10.962.254	14.176.174	14.801.371	15.207.390
Ativo Circulante	701.434	649.684	1.040.831	2.121.866	4.114.324	6.191.925	8.471.665	10.710.563	10.770.292	11.073.569
Disponivel e Inv CP	8.582	14.291	187.255	553.608	887.450	3.552.800	2.467.521	2.926.006	4.220.446	3.713.418
Creditos Comerciais CP	104.200	152.242	133.533	264.091	869.983	479.736	2.560.517	2.868.356	1.077.995	1.434.678
Estoques	539.777	430.502	658.673	1.203.334	2.074.002	1.713.417	3.364.192	3.508.905	3.810.707	4.306.907
Outros Ativos CP	48.875	52.649	61.370	100.833	282.889	445.972	79.435	1.407.296	1.661.144	1.618.566
Realizavel LP	34.916	35.445	274.285	306.111	431.794	364.020	797.562	1.361.764	1.296.262	1.639.350
Creditos Comerciais LP	-	-	-	-	43.439	67.923	166.154	160.208	41.034	377.074
Outros Ativos LP	-	35.445	274.285	306.111	388.355	296.097	631.408	1.201.556	1.255.229	1.262.276
<u>Permanente</u>	1.489.672	1.429.642	1.238.916	1.198.196	1.057.020	1.233.907	1.693.027	2.103.847	2.734.817	2.494.471
Inv em Subsid e Outros	695	628	265	7.610	9.885	12.393	14.343	21.138	15.983	57.837
Inv em Coligadas	-	-	-		9.613	12.087	14.343	21.138	15.983	57.837
Invest em Subsidiarias Outros Investimentos	-	-	255 11	7.404 206	- 272	306	-	-	-	-
Imobilizado	667.404	578.246	539.489	533.685	600.303	798.304	1.019.535	1.172.203	1.358.430	1.173.772
Imobiliz antes Deprec	1.431.589	1.240.344	1.196.494	1.225.723	1.296.845	1.522.705	1.790.120	1.989.072	2.199.428	2.039.093
Depreciacao Acumulada	(764.185)	(662.098)	(657.005)	(692.038)	(696.542)	(724.401)	(770.585)	(816.870)	(840.998)	(865.320)
Diferido	821.573	850.768	699.162	656.901	446.832	423.210	659.149	910.506	1.360.404	1.262.862
Diferido antes Amort	1.163.251	1.204.588	1.103.496	1.162.236	1.060.321	1.151.497	1.467.481	1.488.859	1.942.040	1.910.202
Amortizacao Acumulada	(341.678)	(353.820)	(404.334)	(505.335)	(613.488)	(728.288)	(808.331)	(578.353)	(581.636)	(647.339)
	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Passivo e Patrimonio Liq	2.226.022	2.114.771	2.554.032	3.626.174	<u>5.603.138</u>	7.789.852	<u>10.962.255</u>	<u>14.176.174</u>	<u>14.801.370</u>	<u>15.207.391</u>
<u>Passivo Circulante</u>	919.409	927.716	1.258.345	2.203.699	3.357.843	4.077.115	5.607.121	6.936.190	7.029.357	5.811.720
Financiamento CP	272.036	405.471	451.488	1.174.021	1.609.427	1.094.974	1.735.350	1.089.185	1.723.308	1.460.761
Debentures CP	11.199	-	-	-	2.956	2.745	-	-	-	-
Fornecedores CP	82.226	183.591	340.766	439.131	579.961	796.202	873.599	1.439.406	1.346.746	1.583.718
Impostos a Pagar CP	56.186	53.017	54.972	48.019	110.869	347.901	589.397	291.535	77.854	134.206
Dividendos a Pagar CP	-	-	-	59.883	140.521	177.408	144.910	-	-	-
Provisoes CP	-	-	28.828	66.444	193.061	548.132	726.479	1.039.942	1.036.532	958.479
Outros Passivos CP	497.762	285.637	382.290	416.201	721.048	1.109.753	1.537.387	3.076.122	2.844.916	1.674.556
Exigivel LP	928.167	926.897	682.520	684.246	1.116.072	1.336.965	1.841.362	3.015.738	3.425.664	4.592.474
Financiamento LP	115.490	175.219	234.414	264.357	233.312	271.175	807.218	1.372.538	1.756.280	2.349.099
Debentures LP	169.371	251.208	-	-	292.232	271.438	-	-	-	-
Provisoes LP	-	-	-	-	61.982	42.901	35.450	-	-	-
Outros Passivos LP	643.305	500.470	448.106	419.888	528.545	751.451	998.695	1.643.199	1.669.385	2.243.375
<u>Resultados de Exer Futur</u>	539	1.896	1.639	1.220	625	625				
Part Acionistas Minorit	(2)	(2)		-	-	24.426	27.883	29.157	41.504	67.106
<u>Patrimonio Liquido</u>	377.908	258.264	611.528	737.009	1.128.598	2.350.720	3.485.888	4.195.089	4.304.845	4.736.091
Capital Social	3.265.580	3.197.485	635.801	625.446	574.120	1.235.889	1.335.603	2.080.152	2.676.335	3.371.085
Reservas de Capital	13.890	42.773	-	-	257	45.791	168.448	167.761	154.122	149.316
Reserva de Lucros	-	-	-	12.593	554.221	1.069.039	1.981.837	1.947.177	1.474.388	1.215.690
Lucros Acumulados	(2.901.562)	(2.981.994)	(24.272)	98.971	-	-	-	-	-	-
Divida Fin Moeda Estrang	-	-	-	1.203.666	1.630.778	1.187.877	2.406.183	2.354.262	3.403.015	2.851.591

Fonte: Economatica

Com o crescimento sustentável da organização ao longo dos dez últimos anos, a EMBRAER alcançou um salto considerável em seus ativos, cerca de 24% de crescimento médio anual. Para tal expansão, a questão das aquisições de novas fontes de capital externa se tornou natural e necessária, como é possível avaliar no passivo, em financiamento de longo prazo. Nos últimos dez anos a taxa de crescimento médio dos empréstimos de longo prazo foi de 40%. A principal contratação de empréstimos da organização concentrou-se no desenvolvimento de projetos e aquisição de materiais. Esta segregação amparou-se em

contratações em moeda estrangeira, Dólar, representando quase 50% dos empréstimos, a uma taxa base de 7% a.a. O restante está lastreado, quase que em sua totalidade, em captações via BNDES — Banco Nacional de Desenvolvimento Econômico e Social, com taxas anuais variando em TJLP — Taxa de Juros de Longo Prazo mais *spread*.

5.1.3 Os indicadores de desempenho

Inicialmente, serão apresentados os indicadores de desempenho, possibilitando uma análise quantitativa da empresa. Os indicadores estão agrupados de forma única, alinhados alfabeticamente.

Tabela 10: Indicadores de Desempenho da Embraer – (1995-2004)

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Divida Bruta / Atv Tt %	25,5	39,3	26,9	39,7	38,2	21,1	23,2	17,4	23,5	25,1	21,4
Divida Bruta / Pat Liq %	150,3	322,1	112,2	195,2	189,4	69,8	72,9	58,7	80,8	80,4	76,8
EBIT / Divida Bruta %	-3,2	2,3	30,2	33,3	49,3	101,2	119,1	125,5	47,0	57,1	29,3
Divida CP / Divida Tt %	49,9	48,7	65,8	81,6	75,4	66,9	68,3	44,2	49,5	38,3	30,6
Pay Out %	0,0	0,0	0,0	41,8	30,0	44,6	36,7	28,0	33,2	46,6	62,7
Giro do Ativo	0,3	0,3	0,6	0,8	1,0	1,0	0,9	0,7	0,5	0,7	0,5
Margem Bruta %	19,1	20,9	26,7	28,3	29,0	31,1	41,6	44,6	35,8	33,3	23,7
Margem EBIT %	-2,6	2,6	14,0	17,3	19,3	21,3	31,0	31,6	21,6	19,8	11,7
Margem Liquida %	-87,0	-32,1	-4,0	8,4	12,2	12,7	16,0	15,2	8,9	12,3	7,8
Margem EBITDA	11,6	16,4	21,4	23,7	23,1	24,2	33,4	34,1	24,0	22,0	14,8
Retorno sobre Ativo %	-27,1	-11,0	-2,3	6,4	11,9	12,7	14,2	10,5	4,6	8,9	4,2
Retorno sobre Patrimônio Líquido %	-159,7	-89,9	-9,7	31,6	59,1	41,9	44,8	35,4	15,7	28,4	15,0

Fonte: Economatica

Os indicadores demonstrados na Tabela 10 constituem os principais para a Embraer sobre a ótica da mensuração do seu desempenho financeiro. Ao longo dos anos é perceptível a evolução consistente destes indicadores traduzida por uma estratégia de ampliação sustentável dos negócios frente a uma política de redução dos custos. As ações de expansão de novos mercados, como por exemplo, Americano e Chinês, fizeram com que a Embraer evoluísse operacionalmente, aumentando seu faturamento e ao mesmo tempo introduzindo uma gestão voltada para o resultado. Isto contribuiu para que indicadores como margem líquida e *pay out* evoluíssem virtuosamente, -87% para 7,8% e 0 para 62,7%, respectivamente.

Alguns indicadores podem explicar de forma direta o excelente desempenho da Embraer após 1994, como:

- Dívida Bruta / Patrimônio Líquido
- Exigível Total / Patrimônio Líquido
- Lucro por ação
- Margem Bruta
- Margem Líquida
- Retorno sobre ativo
- Retorno sobre Patrimônio Líquido
- Valor Patrimonial da ação

Ao longo dos anos o endividamento reduziu-se, as receitas aumentaram, e principalmente, o mercado, através da valorização do preço da ação, entendeu este novo momento da Embraer. Neste sentido, a empresa redirecionou a sua estratégia, determinando novos patamares avaliativos, novas rotas para o crescimento.

Para que este caminho de análise fosse construído de forma evolutiva e didática, abordamos as principais premissas utilizadas para compor, em primeiro lugar, o custo de capital da organização e, em segundo momento, o EVA®.

5.1.4 O custo do capital próprio da Embraer

O modelo adotado para a construção do custo de capital foi o CAPM, já discutido em capítulos anteriores. Na abordagem sobre a conceituação de um modelo para estabelecer o custo para um determinado capital, muitas são as definições. Segundo Weston e Brigham (2000), o investidor sensato, não deve se preocupar, implacavelmente, se o preço da ação subiu ou desceu, mas o que realmente importa é o aumento ou redução do risco em uma carteira.

Assim, temos a equação do CAPM:

E(Rj) = Rf + [E(Rm) - Rf)]bj,

Na qual:

E(Rj) = Retorno esperado

Rf = Retorno livre de risco

E(Rm) = Retorno esperado de mercado

bj = quantificação do risco não diversificável = COV (Rj,Rm)/VAR (Rm)

1) A taxa livre de risco

Para a definição do Rf, a taxa livre de risco, alguns autores se colocam sobre a posição de grandes variações de um país para outro. Damodaran (2002) afirma que a taxa livre de risco poderia, em seu limite superior, compreender-se entre a taxa de juros de financiamento da maior e mais segura empresa do país e, o limite inferior, a taxa de juros oferecida por um banco seguro local. Em suma, o ativo livre de risco deverá ser aquele que garanta, com certeza, fluxos de caixa futuros. Fama, Barros e Silveira (2002), fazem alguns estudos da adequação do Cbond (título da dívida brasileira) na conceituação de um ativo livre de risco. Fama, Barros e Silveira (2002), realizam testes estatísticos a fim de comprovarem este fato com o Cbond, que não apresenta resultado considerável ao nível de 5% de significância. Assim, os testes são prosseguidos, e nota-se que tanto a poupança como o CDI alcançaram beta igual a zero ao nível de 5% de significância.

Para o nosso estudo fora considerado como taxa livre de risco o CDI, conforme disposição abaixo:

CDI médio 1995 a 2004 = 26,1 % a.a.

2) O coeficiente beta (b)

O coeficiente beta mede a volatilidade de um determinado ativo em relação ao mercado.

Deste modo, para os períodos compreendidos entre 1995 e 2004, foi utilizado beta referente aos retornos do ativo e do mercado dos últimos 60 meses, sendo b=0,8. Este cálculo foi efetuado baseando-se nos dados apresentados e comparados com informações da consultoria Economatica.

3) O retorno de mercado e prêmio pelo risco de mercado

Para este estudo, o retorno de mercado utilizado para o cálculo do Rm foi o IBOVESPA, índice este extraído da Bolsa de Valores do Estado de São Paulo. O cálculo foi executado a partir da média aritmética dos retornos de mercado ao longo de 1995 a 2004.

Assim, para se ter o retorno de mercado, e, o prêmio pelo risco de mercado, temos:

 $Rm_{1995/2004} = 30,7\%$

 $(Rm - Rf)_{1995/2004} = 4,6\%$

Tabela 11: Evolução do custo de capital próprio da Embraer – (1995-2004)

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Capital Próprio	377.908	258.264	611.528	737.009	1.128.598	2.350.720	3.485.888	4.195.089	4.304.845	4.736.091
Capital Próprio (Ações Ordinárias)	30,2%	30,2%	30,2%	30,2%	30,2%	29,7%	29,7%	29,7%	29,7%	29,7%
Capital Próprio (Ações Preferenciais)	26,0%	26,0%	26,0%	38,9%	22,8%	16,7%	12,2%	7,4%	8,0%	6,0%
Custo Capital Próprio	28,10%	28,10%	28,10%	34,56%	26,55%	22,55%	19,09%	14,99%	15,38%	14,03%
Beta	0,80	08,0	08,0	0,80	0,80	0,80	0,80	0,80	0,80	08,0
Rf	26,1%	26,1%	26,1%	26,1%	26,1%	26,1%	26,1%	26,1%	26,1%	26,1%
Rm-Rf	4,6%	4,6%	4,6%	4,6%	4,6%	4,6%	4,6%	4,6%	4,6%	4,6%

Fonte: Economatica e análise do estudo de caso

5.1.5 Custo de capital de terceiros da Embraer

Como comentado no referencial teórico deste estudo, o custo de capital de terceiros se dá a partir do momento que uma empresa assume a contratação de algum tipo de financiamento. O custo de capital de terceiros pode ser considerado como os juros dos empréstimos, ou seja, possuem um determinado valor e são exigidos a determinado período.

Para a EMBRAER, ao longo dos anos, foi observada e conservada a divisão entre financiamentos em moeda nacional e estrangeira, e através do balanço patrimonial da companhia, podido identificar o custo médio de cada fonte, conforme Tabela 12:

Tabela 12: Evolução do custo de capital de terceiros da Embraer – (1995-2004)

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Fin. Nacionais	387.526	580.690	685.902	234.712	211.961	178.272	136.385	107.461	76.573	958.269
Custo Líquido	13%	13%	13%	13%	13%	10%	10%	10%	10%	10%
Fin. Moeda Estrang.	-	-	-	1.203.666	1.630.778	1.187.877	2.406.183	2.354.262	3.403.015	2.851.591
Custo Líquido	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%

Fonte: Economatica e análise do estudo de caso

5.1.6 Custo médio ponderado de capital

Como abordado no capítulo II, referencial teórico, o custo médio ponderado de capital é uma medida de avaliação ponderadas das diversas fontes de capital da organização. Com esta variável, é possível avaliar exatamente qual o custo de capital de uma determinada organização. Assim, ponderando todas as fontes de capital, a EMBRAER apresentou no período analisado, o seguinte *WACC*:

Tabela 13: Evolução do custo médio ponderado de capital da Embraer (1995-2004)

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Capital Próprio	377.908	258.264	611.528	737.009	1.128.598	2.350.720	3.485.888	4.195.089	4.304.845	4.736.091
Capital Próprio (Ações Ordinárias)	30,2%	30,2%	30,2%	30,2%	30,2%	29,7%	29,7%	29,7%	29,7%	29,7%
Capital Próprio (Ações Preferenciais)	26,0%	26,0%	26,0%	38,9%	22,8%	16,7%	12,2%	7,4%	3,3%	6,7%
Custo Capital Próprio	28,10%	28,10%	28,10%	34,56%	26,55%	22,55%	19,09%	14,99%	16,00%	14,49%
Beta	08,0	08,0	0,80	0,80	08,0	0,80	0,80	0,80	08,0	0,80
Rf	26,1%	26,1%	26,1%	26,1%	26,1%	26,1%	26,1%	26,1%	26,1%	26,1%
Rm-Rf	4,6%	4,6%	4,6%	4,6%	4,6%	4,6%	4,6%	4,6%	4,6%	4,6%
Capital de Terceiros	387.526	580.690	685.902	1.438.378	1.842.739	1.366.149	2.542.568	2.461.723	3.479.588	3.809.860
Custo Capital de Terceiros	13,2%	13,2%	13,2%	6,0%	5,6%	5,3%	4,9%	4,9%	4,7%	5,9%
WACC	20,56%	17,79%	20,22%	15,69%	13,56%	16,21%	13,10%	11,24%	10,97%	10,68%

Fonte: Economatica e análise do estudo de caso

5.1.7 O EVA® da Embraer

A partir de sua privatização, em 1994, a Embraer teve que redirecionar seus objetivos estratégicos frente aos desafios de um mercado altamente concorrido. Inicialmente, 1995, partiu com EVA® negativo em R\$144 milhões, destruindo valor, algo que ao longo dos anos, através de arrojos operacionais e estratégia de crescimento, pode ser corrigido, chegando em 2004 com EVA® positivo em R\$972 milhões. Em uma análise pontual, a partir do momento em que o EVA® se tornou positivo, em 1997, comparando com 2004, o crescimento foi de 516%.

Para o êxito na performance apresentada, alguns fatores foram responsáveis, como o crescimento qualitativo dos produtos oferecidos ao mercado, promovendo o crescimento das vendas, e ainda, a otimização dos recursos utilizados na operação, como custos e fontes de financiamento.

Tabela 14: Evolução do EVA® - R\$ mil (1995-2004)

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Capital Operacional Investido	68.459	180.786	523.498	1.383.572	2.535.022	3.099.527	5.642.466	4.249.338	4.712.612	5.564.105
Ativos Circulantes Operacionais	645.618	589.810	964.686	1.993.342	3.776.930	5.668.050	8.294.463	9.205.575	9.033.352	9.345.317
Passivos Circulantes Operacionais	138.412	236.608	424.566	613.477	1.024.412	1.869.643	2.334.385	2.770.883	2.461.132	2.676.403
Capital de Giro Operacional	507.206	353.202	540.120	1.379.865	2.752.518	3.798.407	5.960.078	6.434.692	6.572.220	6.668.914
Ativo Imobilizado Liquido	667.404	578.246	539.489	533.685	600.303	798.304	1.019.535	1.172.203	1.358.430	1.173.772
Outros Ativos Operacionais	34.916	35.445	274.285	306.111	431.794	364.020	1.198.935	1.361.764	1.296.263	1.639.350
Outros Passivos Operacionais	1.141.067	786.107	830.396	836.089	1.249.593	1.861.204	2.536.082	4.719.321	4.514.301	3.917.931
Ajuste do IR	111.819	128.317	(56.389)	41.057	257.801	517.729	902.879	1.047.459	523.394	622.307
Provisão IR	(1.844)	1.162	(200.801)	20.660	111.292	419.580	653.791	670.073	288.191	356.950
(+) Impostos s/ desp. Financeira	72.990	118.164	92.264	43.736	277.436	264.392	488.097	1.158.689	(128.552)	187.455
(+) Impostos s/ outras Desp. Não Op.	211.212	66.586	59.281	4.759	18.878	8.260	20.568	3.514	23.248	904
(-) Impostos s/ receita financeira	2.940	4.759	3.612	27.420	148.276	156.253	257.018	783.264	(345.663)	(77.665)
(-) Impostos s/ outras Rec. Não Op.	167.600	52.837	3.521	678	1.529	18.250	2.559	1.553	5.156	667
Taxa IR	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%
Variação Imp. Diferido	-	-	-	-	(256.906)	(102.776)	36.492	(127.479)	-	-
NOPLAT	(130.060)	(109.408)	263.696	437.720	539.229	1.038.968	2.161.785	1.914.009	1.110.784	1.552.548
ROIC (Retorno s/ Capital Investido)	-189,98%	-60,52%	50,37%	31,64%	21,27%	33,52%	38,31%	45,04%	23,57%	27,90%
WACC (Custo médio ponderado de capital)	20,56%	17,79%	20,22%	15,69%	13,56%	16,21%	13,10%	11,24%	10,62%	10,43%
EVA	(144.132)	(141.563)	157.827	220.632	195.430	536.534	1.422.366	1.436.443	610.250	972.247

5.2 As análises envolvendo a Embraer

Assim, a pesquisa consistiu em investigar se a estrutura de capital da Embraer proporcionou ou não maximização do valor da companhia, e ainda, se o EVA®, variável de explicitação do valor neste estudo, manteve correlação significante com o preço da ação e outros indicadores de desempenho.

Desta forma, em sentido mais amplo, buscou-se identificar quais as variáveis que influenciaram o EVA® ao longo dos últimos dez anos.

Em primeiro momento, utilizou-se a pesquisa desenvolvida por Brigham, Gapenski e Ehrhardt (2001) e, assim, para a Embraer, temos:

Tabela 15: Evolução do Valor da Embraer (1995-2004) – R\$ mil

		Kd	Ks		Valor da			
	Valor da dívida D, (\$)	Custo Capital Terceiros	Custo Capital Próprio	Valor das ações S, (\$)	Empresa V, (\$)	Preço da ação Po	Dívida/Valor	WACC
1995	387.526	13,2%	28,1%	377.908	765.434	2,25	50,6%	20,6%
1996	580.690	13,2%	28,1%	258.264	838.954	0,73	69,2%	17,8%
1997	685.902	13,2%	28,1%	611.528	1.297.430	2,14	52,9%	20,2%
1998	1.438.378	6,0%	34,6%	737.009	2.175.387	0,93	66,1%	15,7%
1999	1.842.739	5,6%	26,6%	1.128.598	2.971.337	3,90	62,0%	13,6%
2000	1.366.149	5,3%	22,5%	2.350.720	3.716.869	8,11	36,8%	16,2%
2001	2.542.568	4,9%	19,1%	3.485.888	6.028.456	12,02	42,2%	13,1%
2002	2.461.723	4,9%	15,0%	4.195.089	6.656.812	11,64	37,0%	11,2%
2003	3.479.588	4,7%	15,4%	4.304.845	7.784.433	13,52	44,7%	10,6%
2004	3.809.860	5,9%	14,0%	4.736.091	8.545.951	18,33	44,6%	10,4%

A Tabela 15 explicita o valor da Embraer ao longo dos anos e, principalmente, após a privatização, 1995, o valor atingiu crescimento vertiginoso, 1016% (1995-2004). Na análise do valor da empresa, é possível observar que o valor aumenta ao longo dos anos, enquanto o fator dívida em relação ao valor diminui. Além disso, a influência não se dá somente pelo fator dívida em relação ao valor, mas também pelo fato do *WACC* ter reduzido e a elevação do preço da ação ter se mostrado consistente.

No estudo realizado, classificando a análise pelo valor da empresa, temos:

Tabela 16: Evolução do Valor da Embraer (1994-2004) – R\$ mil

	Valor da dívida D, (\$)	Kd Custo Capital Terceiros	Ks Custo Capital Próprio	Valor das ações S, (\$)	Valor da Empresa V, (\$)	Preço da ação Po	Dívida/Valor	WACC
2000	1.366.149	5,3%	22,5%	2.350.720	3.716.869	8,11	36,8%	16,2%
2002	2.461.723	4,9%	15,0%	4.195.089	6.656.812	11,64	37,0%	11,2%
2001	2.542.568	4,9%	19,1%	3.485.888	6.028.456	12,02	42,2%	13,1%
2004	3.809.860	5,9%	14,0%	4.736.091	8.545.951	18,33	44,6%	10,4%
2003	3.479.588	4,7%	15,4%	4.304.845	7.784.433	13,52	44,7%	10,6%
1994	607.458	13,2%	29,9%	593.582	1.201.040	2,82	50,6%	21,4%
1995	387.526	13,2%	28,1%	377.908	765.434	2,25	50,6%	20,6%
1997	685.902	13,2%	28,1%	611.528	1.297.430	2,14	52,9%	20,2%
1999	1.842.739	5,6%	26,6%	1.128.598	2.971.337	3,90	62,0%	13,6%
1998	1.438.378	6,0%	34,6%	737.009	2.175.387	0,93	66,1%	15,7%
1996	580.690	13,2%	28,1%	258.264	838.954	0,73	69,2%	17,8%

O maior valor encontrado para a Embraer ocorreu no ano de 2004, R\$ 8,5 bilhões. Desta forma, a estrutura ótima para a organização em análise se deu quando cerca de 44,6% em dívida foi contratada. Não se pode inferir que a estrutura de capital será estática ao longo dos anos, pelo contrário. O conceito de estrutura ótima é momentâneo, podendo se alterar e formar condição melhor do que a apresentada.

A escolha dos indicadores que fizeram parte dos estudos de correlação para Embraer foi baseada na influência que este exercia sobre a estruturação do cálculo do valor da empresa.

Para que esta análise fosse construída, optou-se por observar todos os principais indicadores de desempenho da Embraer, isto é, variação percentual, que possuíssem interdependência com a geração de valor, a fim de permitir inferir se houve correlação significante entre o EVA® e outros indicadores de desempenho.

Tabela 17: Variação em % dos indicadores de desempenho (1995-2004)

	EVA®	WACC	Preço Ação	Kd	Ks	Cresc. Receita	Part. Custos	Var. Lucro Líquido	Var. Lucro p/ Ação	Var. D/V	Var. NOPLAT
1995	56,0%	-4,1%	-20,4%	0,0%	-5,9%	32,3%	-15%	31%	50%	0,1%	45,0%
1996	1,8%	-13,5%	-67,7%	0,0%	0,0%	4,1%	-2%	63%	84%	36,7%	15,9%
1997	211,5%	13,7%	194,8%	0,0%	0,0%	104,5%	-7%	88%	85%	-23,6%	341,0%
1998	39,8%	-22,4%	-56,4%	-54,4%	23,0%	87,4%	-2%	310%	493%	25,1%	66,0%
1999	-11,4%	-13,6%	316,9%	-6,9%	-23,2%	96,8%	-1%	46%	188%	-6,2%	23,2%
2000	174,5%	19,5%	108,1%	-5,3%	-15,1%	42,9%	-3%	3%	31%	-40,7%	92,7%
2001	165,1%	-19,2%	48,1%	-7,6%	-15,3%	25,5%	-15%	26%	38%	14,7%	108,1%
2002	1,0%	-14,2%	-3,1%	-1,1%	-21,5%	-0,1%	-5%	-5%	-5%	-12,3%	-11,5%
2003	-57,5%	-5,5%	16,1%	-2,4%	2,6%	-22,4%	16%	-41%	-55%	20,9%	-42,0%
2004	59,3%	-1,8%	35,6%	25,6%	-8,7%	44,7%	4%	37%	98%	-0,3%	39,8%

A realização da análise se amparou em desenvolver correlações lineares simples e, ainda, a utilização do teste estatístico de significância *t* a fim de provar ou não a hipótese em questão. Para sedimentar as proposições, foi utilizado também o artifício da estatística Cp¹³, possibilitando a construção, através de sucessivas regressões múltiplas, a escolha da melhor composição de indicadores correlatos.

A equação básica adotada foi $Y = a + b_1 X_1 + e$, onde Y é a variável dependente, em primeiro momento, EVA® e X_1 é a variável independente – o Valor D/V, por exemplo. Os

¹³ Estatística Cp – Teste de modelo estatístico avaliativo de modelos

coeficientes da regressão são a e b_1 e o erro é representado pelo e. Alternadamente, a variável dependente foi se alternando, até que todos os indicadores de desempenho fossem utilizados.

Em negrito, na Tabela 18, encontram-se os valores para R² maiores para cada variável independente (WACC – Preço da Ação – Kd Custo Capital de Terceiros – Ks Custo de Capital Próprio – Crescimento da Receita – Participação dos Custo sobre a Receita Líquida – Variação do Lucro Líquido – Variação do Lucro Líquido por Ação – Variação do fator dívida sobre o valor da empresa – Variação do NOPLAT). Os testes se iniciaram tendo com variável dependente o EVA®, e após, todos os outros indicadores de desempenho foram condicionados à variável dependente. Pelo contexto analisado, os maiores R² se deram quando a variável dependente EVA® foi correlacionada com o NOPLAT 0,7649, quando a variável dependente Ks foi correlacionada com a variação do lucro líquido 0,8359 e por fim, quando a variável dependente variação do lucro líquido foi correlacionada com o variação do lucro por ação.

Tabela 18: R² entre os principais indicadores de desempenho (1995-2004)

\mathbb{R}^2	EVA ®	WACC	Preço Ação	Kd	Ks	Cresc. Receita	Part. Custos	Var. Lucro Líquido	Var. Lucro p/ Ação	Var. D/V	Var. NOPLAT
EVA®	1,0000	0,0772	0,0955	0,0069	0,0105	0,1744	0,3233	0,0001	0,0149	0,3303	0,7649
WACC	0,0772	1,0000	0,0012	0,0023	0,3078	0,1448	0,0542	0,1462	0,1466	0,0790	0,0746
Preço Ação	0,0955	0,0012	1,0000	0,0321	0,0962	0,3756	0,000	0,0390	0,0024	0,3294	0,1565
Kd	0,0069	0,0023	0,0321	1,0000	0,5105	0,1058	0,0101	0,6207	0,5883	0,0804	0,0005
Ks	0,0105	0,3078	0,0962	0,5105	1,0000	0,1573	0,0255	0,8359	0,7710	0,1261	0,0079
Cresc. Receita	0,1744	0,1448	0,3756	0,1058	0,1573	1,0000	0,0752	0,3511	0,4177	0,1201	0,4129
Part. Custos	0,3233	0,0542	0,000	0,0101	0,0255	0,0752	1,0000	0,0206	0,0042	0,0416	0,1840
Var. Lucro Líquido	0,0001	0,1462	0,0390	0,6207	0,8359	0,3511	0,0206	1,0000	0,9181	0,0971	0,0591
Var. Lucro p/ Ação	0,0149	0,1466	0,0024	0,5883	0,7710	0,4177	0,0042	0,9181	1,0000	0,0779	0,0096
Var. D/V	0,3303	0,0790	0,3294	0,0804	0,1261	0,1201	0,0416	0,0971	0,0779	1,0000	0,1914
Var. NOPLAT	0,7649	0,0746	0,1565	0,0005	0,0079	0,4129	0,1840	0,0591	0,0096	0,1914	1,0000

Objetivando auferir um resultado com precisão maior, foram efetuados os testes estatísticos t de significância a 0,05, e assim, podendo delimitar quais correlações realmente poderiam ser aceitas.

Tabela 19: Teste t entre os principais indicadores de desempenho (1995-2004)

t	EVA ®	WACC	Preço Ação	Kd	Ks	Cresc. Receita	Part. Custos	Var. Lucro Líquido	Var. Lucro p/ Ação	Var. D/V	Var. NOPLAT
EVA ®	1,0000	(0,8179)	0,9191	(0,2360)	0,2918	1,3001	1,9550	0,0254	(0,3480)	1,9861	5,1021
WACC	(0,8179)	1,0000	0,0968	(0,1359)	1,8861	1,1637	0,6769	1,1705	1,1724	(0,8284)	0,8032
Preço Ação	0,9191	0,0968	1,0000	0,5150	(0,9230)	2,1936	(0,0171)	(0,5697)	(0,1400)	(1,9821)	1,2181
Kd	(0,2360)	(0,1359)	0,5150	1,0000	(2,8887)	(0,9730)	0,2852	(3,6183)	(3,3809)	(0,8364)	(0,0615)
Ks	0,2918	1,8861	(0,9230)	(2,8887)	1,0000	1,2220	0,4572	6,3845	5,1904	1,0742	0,2518
Cresc. Receita	1,3001	1,1637	2,1936	(0,9730)	1,2220	1,0000	(0,8064)	2,0807	2,3956	(1,0449)	2,3722
Part. Custos	1,9550	0,6769	(0,0171)	0,2852	0,4572	(0,8064)	1,0000	(0,4101)	(0,1831)	0,5895	(1,3432)
Var. Lucro Líquido	0,0254	1,1705	(0,5697)	(3,6183)	6,3845	2,0807	(0,4101)	1,0000	0,9181	0,0971	0,0591
Var. Lucro p/ Ação	(0,3480)	1,1724	(0,1400)	(3,3809)	5,1904	2,3956	(0,1831)	0,9181	1,0000	0,8219	0,2789
Var. D/V	1,9861	(0,8284)	(1,9821)	(0,8364)	1,0742	(1,0449)	0,5895	0,0971	0,8219	1,0000	(1,3760)
Var. NOPLAT	5,1021	0,8032	1,2181	(0,0615)	0,2518	2,3722	(1,3432)	0,0591	0,2789	(1,3760)	1,0000

Tabela 20: Validação das variáveis independentes para a Embraer (1995-2004)

t	EVA®	WACC	Preço Ação	Kd	Ks	Cresc. Receita	Part. Custos	Var. Lucro Líquido	Var. Lucro p/ Ação	Var. D/V	Var. NOPLAT
EVA ®		NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	SIM
WACC	NÃO		NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO
Preço Ação	NÃO	NÃO		NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO
Kd	NÃO	NÃO	NÃO		SIM	NÃO	NÃO	SIM	SIM	NÃO	NÃO
Ks	NÃO	NÄO	NÄO	SIM		NÃO	NÃO	SIM	SIM	NÃO	NÄO
Cresc. Receita	NÃO	NÃO	NÃO	NÃO	NÃO		NÃO	NÃO	SIM	NÃO	SIM
Part. Custos	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO		NÃO	NÃO	NÃO	NÃO
Var. Lucro Líquido	NÃO	NÃO	NÃO	SIM	SIM	NÃO	NÃO		NÃO	NÃO	NÃO
Var. Lucro p/ Ação	NÃO	NÃO	NÃO	SIM	SIM	SIM	NÃO	NÃO		NÃO	NÃO
Var. D/V	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO		NÃO
Var. NOPLAT	SIM	NÃO	NÃO	NÃO	NÃO	SIM	NÃO	NÃO	NÃO	NÃO	

Pelo analisado e comprovado, não foi possível identificar significância geral para o EVA® e as demais variáveis dependentes. As análises mostraram-se incapazes de traduzir que os indicadores de estrutura de capital influenciam diretamente a geração de valor para a companhia, entretanto, o NOPLAT pode ser significativamente correlacionado, e desta forma, podemos concluir que questões, intrinsecamente de cunho operacional, podem traduzir em maior nível o valor para a Embraer.

Ainda, foi possível identificar outras variáveis que, dada à correlação, foram capazes de rejeitar a hipótese de falta de significância, sendo elas:

EVA® e NOPLAT

Ks (custo do capital próprio) e Variação no lucro líquido

Ks (custo do capital próprio) e Kd (custo do capital terceiros)

Ks (custo do capital próprio) e Variação no lucro por ação

Kd (custo do capital terceiros) e Variação no lucro líquido

Kd (custo do capital terceiros) e Variação no lucro por ação

Crescimento da receita e Variação no lucro líquido

Crescimento da receita e NOPLAT

A fim de extrair o máximo das análises propostas, construiu-se uma série de relações múltiplas, tendo como variável dependente o EVA® e independentes independente (WACC – Preço da Aço – Kd Custo Capital de Terceiros – Ks Custo de Capital Próprio – Crescimento da Receita – Participação dos Custo sobre a Receita Líquida – Variação do Lucro Líquido – Variação do Lucro Líquido por Ação – Variação do fator dívida sobre o valor da empresa – Variação do NOPLAT). Estas análises foram efetuadas e testadas incessantemente, até chegar-se a resposta de quais poderiam ser as variáveis independentes capazes de, significativamente, correlacionarem-se com o EVA®, a assim, utilizou-se a metodologia da estatística Cp, que observa as correlações e prioriza a formação dos agrupamentos pelos maiores R² encontrados, e ainda, se há significância a 0,05.

Considerando, o EVA® como variável dependente, e como variáveis independentes, em quatro casos de análise distintos, temos:

Caso 1

X1 - WACC

X2 - Preço da Ação

X3 - Kd Custo Capital de Terceiros

X4 - Ks Custo de Capital Próprio

X5 - Crescimento da Receita

X6 - Participação dos Custo sobre a Receita Líquida

X7 - Variação do Lucro Líquido

Caso 2

- X1 Preço da Ação
- X2 Kd Custo Capital de Terceiros
- X3 Ks Custo de Capital Próprio
- X4 Crescimento da Receita
- X5 Participação dos Custo sobre a Receita Líquida
- X6 Variação do Lucro Líquido
- X7 Variação do Lucro Líquido por Ação

Caso 3

- X1 Kd Custo Capital de Terceiros
- X2 Ks Custo de Capital Próprio
- X3 Crescimento da Receita
- X4 Participação dos Custo sobre a Receita Líquida
- X5 Variação do Lucro Líquido
- X6 Variação do Lucro Líquido por Ação
- X7 Variação do fator dívida sobre o valor da empresa

Caso 4

- X1 Ks Custo de Capital Próprio
- X2 Crescimento da Receita
- X3 Participação dos Custo sobre a Receita Líquida
- X4 Variação do Lucro Líquido
- X5 Variação do Lucro Líquido por Ação
- X6 Variação do fator dívida sobre o valor da empresa
- X7 Variação do NOPLAT

Os quatro casos foram desenvolvidos pela limitação de sete variáveis independentes testadas a cada modelo. Após a execução das análises os resultados foram:

Tabela 21: Caso 1 – Regressão Múltipla Tabela 22: Caso 2 – Regressão Múltipla

				· •					_		- · · ·
Modelo	Ср	k R ²	R ² Ajustado	Considerar este modelo?		Modelo	Ср	k	R ²	R ² Ajustado	Considerar este modelo?
X1X4X6 X2X3X4X5X6X7	1,5689 6,0292	4 0,9020 7 0,9607	0,8432 0,8430	Sim Sim	X.	(1X2X3X4X5X6X7 (1X2X3X4X5X6	8,0000 34,9267	7	0,9987 0,9607	0,9895 0,8430	Sim Não
X1X4X6X7 X1X3X4X6	3,4486 3,4965	5 0,9066 5 0,9048	0,8132 0,8096	Sim Sim	X	(1X2X4X6 (1X2X4X5X6	118,8200 94,0239	5 6	0,8455 0,8806	0,6909 0,6816	Não Não
X1X2X4X6 X1X4X5X6	3,5362 3,5681	5 0,9033 5 0,9020	0,8065 0,8041	Sim Sim	X.	(1X2X4X6X7 (1X3X4X5X6	99,1900 105,3883	6	0,8738 0,8657	0,6635 0,6418	Não Não
X1X6 X1X6X7	0,9373 2,3105	3 0,8498 4 0,8737	0.7998 0.7980	Sim Sim	X.	(1X2X4X5X6X7 (1X2X3X4X6	78,8739 115,9051	7 6	0,9031 0,8519	0,6124 0,6051	Não Não
X1X4X5X6X7 X1X3X6	5,1244 2,6087	6 0,9190 4 0.8624	0,7839 0,7798	Sim	X	3X4X5X6 1X4X5X7	155,4966 157,7968	5	0,7973 0,7943	0,5947 0,5886	Não Não
X1X5X6	2,7766	4 0,8560	0,7695	Sim	X	3X4X5X7	163,6233	5	0,7867	0,5734	Não
X1X2X6 X1X2X4X6X7	2,7842 5,2722	4 0,8557 6 0,9133	0,7691 0,7689	Sim Sim	X	(1X2X4X5X7 (1X2X4X7	126,3328 168,8501	5	0,7798	0,5597	Não Não
X1X2X5X6 X1X2X3X4X6	4,1810 5,4118	5 0,8787 6 0,9080	0,7573 0,7547	Sim Sim	X	(1X3X4X5X6X7 (1X2X3X4X7	94,0010 138,9730	7 6	0,8833 0,8216	0,5330 0,5244	Não Não
X1X2X6X7 X1X3X4X6X7	4,2332 5,4341	5 0,8767 6 0,9072	0,7534 0,7524	Sim Sim		(1X3X4X5X7 (1X4X7	144,0868 237,3821	6 4	0,8149	0,5065 0,4997	Não Não
X1X5X6X7 X1X2X4X5X6	4,2667 5,4621	5 0,8754 6 0,9061	0,7508 0,7496	Sim Sim	X.	(1X2X3X4X6X7 (4X5X6X7	100,9432 193,5501	7 5	0,8741	0,4966 0,4949	Não Não
X1X3X6X7 X1X3X4X5X6	4,3097 5,4831	5 0,8738 6 0,9053	0.7475 0.7474	Sim Sim	X	2X3X4X5X6 3X4X5X6X7	156,9651 157,4136	6	0,7980 0,7975	0,4614 0,4599	Não Não
X1X2X3X6 X1X3X5X6	4,4905 4,5784	5 0,8669	0,7337 0,7270	Sim	X	1X4X5X6X7 (1X4X5X6	159,6999 214,4258	6 5	0,7945	0,4519 0,4401	Não Não
X1X2X4X5X6X7	6,9958	7 0,9239	0,6955	Sim	X	2X3X4X5X7	165,5477	6	0,7868	0,4314	Não
X1X2X3X4X5X6X7 X2X3X5X7	8,0000 5,0519	8 0,9619 5 0,8455	0,6949 0,6909	Sim Não	X	4X5X7 4X6X7	282,2023 284,2215	4	0,6285 0,6259	0,4056 0,4014	Não Não
X2X3X5X6X7 X1X2X3X5X6	6,1304 6,1696	6 0,8806 6 0,8791	0,6816 0,6776	Não Não	X	(1X3X4X7 (1X3X5X7	229,4813 234,5548	5 5	0,7003 0,6936	0,4006 0,3873	Não Não
X1X2X5X6X7 X1X3X4X5X6X7	6,1765 7,1241	6 0,8788 7 0,9190	0 6769 0 6759	Não Não	X.	(1X4X6X7 (1X3X5X6	237,7597 238,4459	5 5	0,6894	0,3789 0,3771	Não Não
X1X2X3X6X7 X1X3X5X6X7	6,2329 6,2616	6 0,8767 6 0,8756	0,6712 0,6683	Não Não	X:		415,5106 128,3175	7	0,4484	0,3696 0,3530	Não Não
X1X2X3X4X6X7 X1X2X3X4X5X7	7,2404 7,3186	7 0,9145	0,6582 0,6463	Não Não	X	3X4X6X7 1X5X6X7	248,0569 255,1286	5 5	0,6759	0,3519 0,3333	Não Não
X1X2X3X4X5X6	7,3369	7 0,9109	0.6435	Não	X	2X4X5X6X7	195,1450	6	0,7480	0,3279	Não
X2X4X5X6X7 X1X2X3X5X7	6,5212 6,8243	6 0,8657 6 0,8541	0,6418 0,6110	Não Não	X.	4X5 1X2X3X5	381,3727 263,8046	5	0,4958 0,6553	0,3277 0,3105	Não Não
X2X3X4X5X7 X4X5X6X7	6,8829 6,3133	6 0,8519 5 0,7973	0,6051 0,5947	Não Não	X	1X5 2X5	393,4216 398,5481	3	0,4800 0,4733	0,3067 0,2977	Não Não
X1X2X3X5X6X7 X3X4X5X6X7	7,7841 8,2950	7 0,8938 6 0,7980	0,5752 0,4614	Não Não	X	5X7 2X3X5	402,7695 339,3310	3 4	0,4677	0,2903 0,2857	Não Não
X2X5X6X7 X2X4X6X7	8,3399 9,1659	5 0,7200 5 0,6885	0,4401 0,3771	Não Não	X	1X4X6 3X5	340,7877 409,2164	4 3	0,5517	0,2827 0,2790	Não Não
X6 X5X6	9,4617 10,2189	2 0,4484 3 0,4958	0,3696 0,3277	Não Não	X	4X5X6 2X4X5	342,9863 343,2200	4	0,5488	0,2780 0.2776	Não Não
X2X3X4X6	10,0381	5 0,6553	0.3105	Não	X	2X4X5X7	277,8850	5	0,6368	0,2736	Não
X2X6 X3X6	10,6332 10,8096	3 0,4733	0,3067 0,2977	Não Não	X	5X6 2X4X6X7	414,0684 281,2779	3 5	0,4529 0,6323	0,2706 0,2647	Não Não
X3X4X6 X2X5X7	10,7042 10,7543	4 0,5536 4 0,5517	0,2857 0,2827	Não Não		(3X5X6 (3X5X7	349,5554 351,5188	4	0,5402 0,5376	0,2643 0,2601	Não Não
X4X6 X5X6X7	11,1764 10,8300	3 0,4593 4 0,5488	0,2790 0,2780	Não Não	X.	(1X3X4X6X7 (1X2X3X5X7	216,6935 217,7399	6	0,7197 0,7183	0,2525 0,2488	Não Não
X3X5X6 X6X7	10,8380 11,3433	4 0,5485 3 0,4529	0.2776 0.2706	Não Não	X.	1X2X3X5X6 1X3X5	217,7899 357,5264	6	0,7183 0,5297	0,2487 0,2475	Não Não
X4X6X7 X1X5	11,0559 11,7247	4 0,5402 3 0,4384	0,2643 0,2512	Não Não	X	25X6X7 22X3X4X5	362,3569 294,7969	4 5	0,5234	0,2374	Não Não
X2X3X4X6X7 X2X4X6	10,3868 11,3300	6 0,7183	0,2487 0,2475	Não Não	X	1X4X5	380,9602	4	0,4990	0,1984	Não
X3X4X5X6	11,1039	5 0,6146	0,2292	Não	X	(3X4X5 (2X3X4X5X6X7	381,5593 158,9586	7	0,4982 0,7980	0,1971 0,1922	Não Não
X1 X1X7	12,8232 12,6449	2 0,3202 3 0,4033	0,2231 0,2044	Não Não	X.	(1X5X7 (1X2X5	384,0031 384,4907	4	0,4950 0,4943	0,1920 0,1909	Não Não
X2X5X6 X4X5X6	12,1359 12,1565	4 0,4990 4 0,4982	0,1984 0,1971	Não Não	X	(1X6X7 (1X3X6X7	385,0867 312,3829	4 5	0,4936 0,5915	0,1897 0,1831	Não Não
X2X3X6 X1X4X7	12,2573 12,2814	4 0,4943 4 0,4934	0,1909 0,1895	Não Não	X	(1X3X5X6X7 (2X5X6	236,5421 394,5086	6 4	0,6937 0,4812	0,1831 0,1699	Não Não
X3X6X7 X2X6X7	12,6018 12,6206	4 0,4812 4 0,4805	0,1699 0,1688	Não Não	X-	(4X7 (1X5X6	471,8337 395,0550	3	0,3771	0,1695 0.1688	Não Não
X1X2X5X7 X1X2X5	11,9902 12,7679	5 0,5808 4 0,4749	0,1616 0,1598	Não Não	X	2X5X7 2X3X4X6X7	399,8815 246,7114	4	0,4741	0,1586 0,1475	Não Não
X1X3 X3X4X6X7	13,6851	3 0,3636	0,1515	Não	X	2X3X5X6	326,0257	5	0,5737	0,1473	Não
X1X2X4X5	12,1779 12,2898	5 0,5694	0,1473 0,1388	Não Não	X	1X2X5X6X7 2X3X5X7	247,5895 328,6912	5	0,6792 0,5702	0,1444 0,1403	Não Não
X3X5X6X7 X2X3X5X6	12,6641 12,6727	5 0,5551 5 0,5548	0,1102 0,1096	Não Não	X	2X4X5X6 1X2X4X5	340,1631 340,4139	5 5	0,5551 0,5548	0,1102 0,1096	Não Não
X1X5X7 X1X3X5	13,6142 13,6189	4 0,4426 4 0,4424	0,1081 0,1078	Não Não	X.	(1X3X4X6 (1X2X3X4X5	342,4258 261,2328	5 6	0,5521 0,6613	0,1043 0,0967	Não Não
X1X4X5 X2X4X5X7	13,6497 12,7419	4 0,4412 5 0,5521	0,1060 0,1043	Não Não		2X5X6X7 3X5X6X7	346,9890 351,5266	5 5	0,5462	0,0923 0,0804	Não Não
X1X2 X2X3X4X5X6	14,7479 11,8808	3 0,3231 6 0,6613	0,0974	Não Não		(4 (3)(6)(7)	611,5830 439,7955	2 4	0,1912	0,0757 0,0749	Não Não
X1X4 X5	14,8216 16,2048	3 0,3202 2 0,1912	0.0937 0.0757	Não Não	X	2X4X7 (1X3X4X5	440,2138 354,0031	4	0,4212	0,0740	Não Não
X2X4X5X6 X1X2X7	13,1401 14,4534	5 0,5370 4 0,4106	0,0739 0,0569	Não Não	X	3X4X7	444,8884	4	0,4151	0,0642	Não
X1X3X7	14,6405	4 0,4034	0,0455	Não	X	1X2X5X6 1X2X6X7	377,5190 380,6793	5	0,5061 0,5020	0,0122 0,0039	Não Não
X1X2X4X7 X1X3X4	13,8678 15,1517	5 0,5092 4 0,3839	0,0184 0,0143	Não Não	X	(1X2X5X7 (4X6	384,7246 573,9758	5 3	0,4967 0,2432	(0,0067) (0,0091)	Não Não
X2X3X6X7 X5X7	13,9488 16,8426	5 0,5061 3 0,2432	0,0122 (0,0091)	Não Não		2X4 3X4	583,6420 597,6458	3	0,2305 0,2121	(0,0260) (0,0505)	Não Não
X1X2X3 X1X4X5X7	15,5708 14,2702	4 0,3680 5 0,4938	(0,0113) (0,0123)	Não Não	X.	(1 (1X2X3X6X7	705,2288 310,2947	6	0,0684	(0,0647) (0,0749)	Não Não
X1X3X4X7 X3X5	14,2775 17,1751	5 0,4936 3 0,2305	(0,0129) (0,0260)	Não Não		(1X4 (6X7	613,5269 623,1161	3	0,1913 0,1787	(0,0783) (0,0951)	Não Não
X1X2X3X5 X4X5	14,7512 17.6567	5 0,4755 3 0,2121	(0,0490)	Não Não	X	2X3X4X7 1X2X3X5X6X7	421,1144 219,3123	5 7	0,4489 0,7189	(0,1022) (0,1245)	Não Não
X2 X2X5	19,4253	2 0,0684	(0,0647)	Não Não	X	2X3X5X6X7	325,5869	6	0,5769	(0,1284)	Não
X1X2X4	18,2028 16,7075	4 0,3246	(0,0806)	Não		2X3X6X7	752,4155 434,0765	5	0,0065 0,4319	(0,1362)	Não Não
X1X2X4X5X7 X1X3X4X5	13,6725 15,2971	6 0,5929 5 0,4547	(0,0855) (0,0906)	Não Não	X	7	753,1892 755,5554	2	0,0055 0,0024	(0,1366) (0,1402)	Não Não
X1X3X5X7 X1X2X3X4X5	15,5969 13,9724	5 0,4432 6 0,5815	(0,1135) (0,1160)		X	(2 (1X2X4	755,6256 571,3329	4	0,0023	(0,1403) (0,2012)	Não Não
X4 X7	21,0481 21,0747	2 0,0065 2 0,0055	(0,1355)	Não Não		(3X4X6 (1X3X4	572,2771 573,2242	4	0,2480	(0,2032) (0,2052)	Não Não
X3 X1X2X3X7	21,1585 16.4468	2 0,0023 5 0,4108	(0,1403) (0,1783)	Não Não	x	2X4X6 1X6	575,1735 693,1136	4 3	0,2442 0,0869	(0,2093) (0,2175)	Não Não
X2X3X5 X4X5X7	18,6830 18,7154	4 0,2493 4 0,2480	(0,2012) (0,2032)	Não Não	X	2X3X4	584,6854	4	0,2317	(0,2292)	Não
X2X4X5 X3X5X7	18,7480	4 0,2468	(0,2052)	Não	X.	1X3 1X7	704,2946 706,6276	3	0,0722	(0,2370) (0,2411)	Não Não
X2X7	18,8151 20,9399	3 0,0869	(0,2093) (0,2175)	Não	X	1X2 3X6	707,1956 725,2386	3	0,0684 0,0447	(0,2421) (0,2737)	Não Não
X3X4X5 X1X2X3X4	19,1422 17,1425	4 0,2317 5 0,3843	(0,2292) (0,2314)	Não Não		2X6X7 2X6	609,3074 732,9369	4	0,1994 0,0346	(0,2809) (0,2871)	Não Não
X2X4 X2X3	21,3244 21,4242	3 0,0722 3 0,0684	(0,2370) (0,2421)	Não	X	2X3 3X7	754,4154 754,4154	3	0,0065	(0,3247) (0,3247)	Não Não
X4X7 X3X7	22,0447 22,3094	3 0,0447 3 0.0346	(0,2737)	Não Não	x	2X7 (1X2X6	757,3547 676,3632	3	0,0026 0,1115	(0,3298) (0,4216)	Não Não
X1X2X3X4X7 X3X4	15,8500 23,0481	6 0,5099 3 0.0065	(0,3070)	Não Não	X	1X2X3X4	551,8262	5	0,2775	(0,4451)	Não
X1X3X4X5X7	16,2684	6 0,4939	(0,3496)	Não	X.	1X3X6 1X3X7	692,6166 700,0230	4	0,0902 0,0804	(0,4557) (0,4713)	Não Não
X2X3X7 X2X3X4X5	22,2950 19,9433	4 0,1115 5 0,2775	(0,4216) (0,4451)	Não Não	X	1X2X3 2X3X6	705,2987 707,0035	4	0,0735 0,0713	(0,4824) (0,4859)	Não Não
X2X4X7 X2X3X4	22,8540 23,2902	4 0,0902 4 0,0735	(0,4557) (0,4824)		X	(1X2X7 (2X3X4X6	707,1579 573,8673	4 5	0,0711 0,2485	(0,4863) (0,5029)	Não Não
X3X4X7 X3X4X5X7	23,3488 20,7014	4 0,0713 5 0,2485	(0,4859) (0,5029)			2X3X7 1X2X3X6	756,4152 676,0946	4 5	0,0065	(0,5896) (0,7711)	Não Não
X2X3X4X7	24,2170	5 0,1145	(0,7711)			1X2X3X7	701,4699	5	0,0812	(0,8377)	Não

Tabela 23: Caso 3 – Regressão Múltipla Tabela 24: Caso 4 – Regressão Múltipla

X1X2X4X5X6X7	Ср	k	R ²	R ² Ajustado	Considerar este modelo?	Modelo	Ср	k	R ²	R ² Ajustado	Considerar este modelo?
X1X2X3X4X5X6X7	6,0394 8,0000	7 8	0,9921 0,9924	0,9684 0,9391	Sim Sim	X1X2X4X5X6X7 X2X3X4X5X6X7	6,0941 6,1993	7	0,9847 0,9833	0,9389 0,9331	Sim Sim
X2X4X5X6X7 X2X3X4X5X6X7	11,2212 11,7456	6 7	0.9375 0.9487	0,8332 0,7947	Não Não	X2X4X5X6X7 X1X2X3X4X5X6X7	5,4641	6 8	0,9656 0.9860	0,9083 0,8884	Sim Sim
X2X3X4X5X7	15,3580	6	0,9060	0,7493	Não	X1X2X3X4X5X7	7,6158	7	0,9635	0,8540	Não
X2X4X5X7 X1X2X4X5X7	18,8787 17,8088	5 6	0,8640 0.8873	0,7280 0,6996	Não Não	X1X3X4X5X6 X1X3X4X5X6X7	7,4827 8,4341	6 7	0,9375	0,8332 0,8084	Não Não
X1X2X4X7	20,8602	5	0.8489	0,6978	Não	X1X2X3X4X5X6	8,6781	7	0,9487	0,7947	Não
X2X4X6X7 X2X3X4X6X7	22,3237 19,8602	5 6	0,8378 0,8717	0,6756 0,6580	Não Não	X1X2X4X5X7 X1X2X3X4X6	9,3943 9,7384	6	0,9108 0,9060	0,7621 0,7493	Não Não
X1X2X3X4X5X7	16,3761	7	0,9135	0,6538	Não	X1X3X4X6	10,7487	5	0,8640	0,7280	Não
X1X2X4X6X7 X2X4X7	20,3236 31,2299	6 4	0.8682 0.7548	0,6486 0.6077	Não Não	X3X6X7 X2X4X5X7	11,4382 11.0855	4 5	0,8265 0.8593	0,7223 0,7186	Não Não
X1X2X3X4X7	22,6647	6	0.8504	0,6011	Não	X2X3X4X5X7	10,7388	6	0,8920	0,7121	Não
X2X3X4X5 X2X3X4X6	27,6394 29,0407	5 5	0,7973 0,7867	0,5947 0,5734	Não Não	X1X2X3X4X6X7 X3X7	10,1744 12,6889	7	0,9278 0,7811	0,7112 0,7081	Não Não
X1X2X3X4X6X7 X2X3X4X7	20,4614 32,1047	7 5	0.8824 0.7634	0,5295 0,5267	Não Não	X2X3X6X7 X1X3X4X6X7	11,6079 11,0921	5 6	0,8520 0,8871	0,7040 0,6989	Não Não
X4X7	46,1181	3	0,6263	0,5018	Não Não	X3X4X7	12.8919	4	0,8062	0,6899	Não Não
X4X5X6X7	34,0229 34,2009	5	0.7488	0,4976	Não Não	X3X5X7 X2X3X7	13,0092	4	0,8045	0,6873	Não Não
X3X4X5X6 X1X2X3X4X5	29,5478	5 6	0,7474 0,7980	0,4949 0,4614	Não Não	X1X3X5X6	13,3188 12,6271	5	0,8002 0,8378	0,6804 0,6756	Não Não
X2X3X4X5X6	29,6251	6	0,7975 0,7922	0,4599	Não Não	X6X7 X7	14,7466	3	0,7524	0,6699	Não Não
X3X4X5X6X7 X1X2X3X4X6	30,3178 31,0277	6	0,7868	0,4458 0,4314	Não Não	X3X5X6X7	15,8797 12,9493	5	0,7087 0,8333	0,6671 0,6666	Não Não
X4X5X7 X3X4X7	46,8645 46,8988	4	0,6359 0.6356	0,4174 0,4170	Não Não	X1X3X6X7 X1X3X7	12,9699 13,9963	5	0,8330	0,6660 0,6652	Não Não
X3X4X6	47,8318	4	0,6285	0,4056	Não Não	X1X3X7 X1X7	15,0395	4	0,7908 0,7483	0,6644	Não Não
X1X4X7 X4X6X7	48,0691	4	0,6267 0,6264	0,4027 0,4022	Não Não	X3X4X6X7	13,1413 12,1933	5	0,8306 0,8717	0,6612 0,6580	Não Não
X3X5X6	48,1149 48,1800	4	0,6259	0,4014	Não Não	X1X2X3X5X6 X1X3X5X6X7	12,3873	6	0,8690	0,6507	Não Não
X4 X1X4X5X6X7	67,5075 34,3183	6	0,4484 0.7617	0,3696 0.3647	Não Não	X1X2X3X6X7 X2X6X7	12,5616 15.0500	6 4	0,8666 0.7761	0,6443 0.6417	Não Não
X3X5X6X7	42,8187	5	0,6819	0,3637	Não	X2X3X5X6X7	12,7421	6	0,8641	0,6375	Não
X2X3X5X6	43,5994	5	0,6759	0,3519	Não	X2X7	16,6159	3	0,7263	0,6351	Não
X5X6X7 X1X3X4X5X6	52,5888 36,1311	4 6	0,5923 0,7480	0,3477 0,3279	Não Não	X4X7 X5X7	16,6643 16,7604	3	0,7256 0,7243	0,6342 0,6324	Não Não
X3X4	63,2764	3	0,4958	0,3277	Não	X1X2X5X7	14,1910	5	0,8160	0,6319	Não
X3X4X6X7 X1X4X5X7	46,1608 46,3006	5 5	0,6564 0,6554	0,3129 0,3108	Não Não	X1X3X4X7 X2X3X4X6X7	14,5682 13,2053	5 6	0,8107 0,8576	0,6214 0,6203	Não Não
X1X4	66,2379	3	0,4733	0,2977	Não	X1X2X7	16,0274	4	0,7624	0,6199	Não
X4X6 X1X2X4	66,9658 57,6824	3 4	0,4677 0,5536	0,2903 0,2857	Não Não	X2X3X4X7 X1X2X5X6X7	14,6680 13,3015	5 6	0,8093 0,8563	0,6186 0,6167	Não Não
X1X3X4X7	48,3125	5	0,6401	0,2801	Não	X1X2X3X7	14,7819	5	0,8077	0,6154	Não
X2X4 X3X4X5	68,0774 58,3127	4	0.4593 0.5488	0,2790 0,2780	Não Não	X1X6X7 X3X4X5X7	16,2630 14,8918	4 5	0,7591 0,8062	0,6146 0,6124	Não Não
X1X3X4	58,3530	4	0.5485	0,2776	Não	X2X3X5X7	14,9346	5	0,8056	0,6112	Não
X3X4X5X7 X1X3X4X6	48,7153 48,7425	5 5	0,6368	0,2740 0,2736	Não Não	X1X3X5X7 X5X6X7	14,9980 16,5371	5 4	0,8047 0,7553	0,6094 0,6085	Não Não
X4X5	68,9140	3	0.4529	0,2706	Não Não	X1X3X6 X4X6X7	16,5739	4	0,7548	0,6077	Não
X2X5X6X7 X1X3X5X6	49,1853 49,3276	5	0,6334 0,6323	0,2669 0,2647	Não Não	X2X5X6X7	16,6603 15,3463	4 5	0,7536 0,7998	0,6058 0,5997	Não Não
X2X4X5	59,4453	4	0,5402	0,2643	Não	X1X4X7	17,0059	4	0,7488	0,5981	Não
X2X4X6 X1X4X6X7	59,7839 50,0456	4 5	0.5376 0.6269	0,2601 0,2538	Não Não	X1X5X7 X1X2X3X4	17,0349 15,5256	4 5	0,7484 0,7973	0,5974 0,5947	Não Não
X4X5X6 X1X2X3X4	61,6527	4	0.5234	0,2374	Não	X1X2X4X7	15,6051	5	0,7962	0,5925	Não
X1X2X3X4 X2X3X5X6X7	51,6586 41,3393	5 6	0,6146 0,7083	0,2292 0,2222	Não Não	X2X4X6X7 X1X2X3X5	16,1670 16,2897	5 5	0,7884 0,7867	0,5768 0,5734	Não Não
X7	85,4633 53,3009	2	0,3118	0,2135	Não	X2X4X7	18,3165	4	0,7305 0.8378	0,5688	Não
X1X5X6X7 X2X3X4	64,9637	5 4	0,6021 0,4982	0,2042 0,1971	Não Não	X3X4X5X6X7 X2X5X7	14,6234 18,5222	6 4	0,7276	0,5676 0,5642	Não Não
X1X2X3X4X5X6	31,5467	7	0,7980	0,1922	Não	X4X5X7	18,6629	4	0,7257	0,5611	Não
X5X7 X1X3X4X5X6X7	78,5388 32,2095	7	0,3797 0,7930	0,1729 0,1720	Não Não	X1X2X6X7 X1X2X4X6X7	16,8306 15,3014	5 6	0,7791 0,8284	0,5583 0,5423	Não Não
X3X7 X1X4X5	78,6726 67,1965	3	0,3787 0,4812	0,1716 0.1699	Não	X1X3X4X5X7	15,3117 17,9533	6 5	0,8282 0.7635	0,5419 0,5269	Não
X3X6	78,8743	4	0,4012	0,1695	Não Não	X1X4X5X7 X1X2X3X6	17,9555	5	0,7634	0,5269	Não Não
X2X7	79,4309	3	0,3729	0,1639	Não	X4X5X6X7	18,1210	5	0,7611	0,5223	Não
X1X4X6 X1X3X5X6X7	68,1229 44,7532	4 6	0,4741 0,6824	0,1586 0,1530	Não Não	X1X2X3X5X7 X1X4X6X7	15,9222 18,2298	6 5	0,8197 0,7596	0,5192 0,5192	Não Não
X1X2X3X5X6 X1X2X4X5	45,0225 57,0433	6 5	0,6803 0,5737	0,1475 0,1473	Não Não	X1X5X6X7 X3X6	18,2493 23,7825	5 3	0,7593 0,6263	0,5187 0,5018	Não Não
X1X2X4X6	57,5029	5	0,5702	0,1403	Não	X1X2X3X5X6X7	13,9517	7	0,8751	0,5004	Não
X1X3X4X5 X1X7	59,4810 85,7187	5	0.5551 0.3251	0,1102 0,1001	Não Não	X3X4X5X6 X1X2X3X4X7	19,0063 16,5175	5 6	0,7488 0,8114	0,4976 0,4971	Não Não
X6X7	85,8284	3	0,3242	0,0990	Não	X2X3X4X5	19,1034	5	0,7474	0,4949	Não
X1X3X4X6X7 X1X4X5X6	47,7292 60,6580	6 5	0,6597 0,5462	0,0926 0,0923	Não Não	X1X2X3X4X5 X2X3X4X5X6	17,5178 17,8955	6	0,7975 0,7922	0,4599 0,4458	Não Não
X1X3X4X5X7	48,2725	6	0.6556	0,0816	Não	X1X4X5X6X7	18,6271	6	0,7820	0,4186	Não
X2X4X5X6 X3	61,4404 101,3158	5	0,5402 0.1912	0,0804 0.0757	Não Não	X3X4X6 X2X3X6	25,0990 25,1177	4	0,6359 0.6356	0,4174 0.4170	Não Não
X2X5X6	75,0052	4	0.4218	0,0749	Não	X2X3X5	25,6264	4	0,6285	0,4056	Não
X1X3X6 X2X3X6	75,0773 75,8834	4	0,4212 0,4151	0,0740 0,0642	Não Não	X3X5X6 X2X4X5	25,7807 25,8163	4	0,6264 0,6259	0,4022 0,4014	Não Não
X3X6X7	76,4755	4	0,4106	0,0570	Não	X3	34,5360	2	0,4484	0,3696	Não
X2X3X7 X1X2X5X6X7	77,4987 50,2016	4	0,4028 0,6409	0,0445 0.0424	Não Não	X2X4X5X6 X1X2X4X5	23,8024 24,2281	5	0,6819 0,6759	0,3637 0,3519	Não Não
X1X5X7	78,2786	4	0,3969	0,0350	Não	X4X5X6	28,2202	4	0,5923	0,3477	Não
X2X5X7 X3X5X7	79,4843 79,5340	4	0,3877 0,3873	0,0203 0,0197	Não Não	X2X3 X2X3X5X6	33,1384 25,6247	3 5	0,4958 0,6564	0,3277 0,3129	Não Não
X1X3X7	80,6676	4	0,3787	0,0059	Não	X3X5	35,1501	3	0,4677	0,2903	Não
X2X6X7 X1X2X7	81,3058 81,3589	4	0.3739 0.3735	(0,0018) (0,0025)	Não Não	X1X3 X2X3X4	35,7562 31,3413	3 4	0,4593 0,5488	0,2790 0,2780	Não Não
X3X5	96,4864	3	0,2432	(0,0091)	Não	X2X3X4X6	27,0176	5	0,6370	0,2740	Não
X1X3 X2X3X6X7	98,1531 69,9119	3 5	0,2305 0.4758	(0,0260) (0,0485)		X3X4 X1X4X5X6	36,2124 27,2739	3 5	0,4529 0,6334	0,2706 0,2669	Não Não
X2X3	100,5678	3	0,2121	(0,0505)	Não	X1X3X4	31,9589	4	0,5402	0,2643	Não
X1X6X7 X5X6	87,5231 104,9595	4	0,3266 0,1787	(0,0775) (0,0951)	Não Não	X1X3X5 X3X4X5	32,1435 33,1625	4	0,5376 0,5234	0,2601 0,2374	Não Não
X1X2X3X6	73,4392	5	0,4489	(0,1022)	Não	X1X2X4X5X6	23,9052	6	0,7083	0,2222	Não
X1X3X6X7 X1X2X4X5X6	74,4321 58,6228	5 6	0.4414 0.5769	(0,1173) (0,1284)	Não Não	X6 X1X2X3	44,3267 34,9679	4	0,3118 0,4982	0,2135 0,1971	Não Não
X2	125,5992	2	0,0065	(0,1355)	Não	X4X6	41,4605	3	0,3797	0,1729	Não
X1X2X5X6 X5	75,6742 125,7326	5	0.4319	(0,1362) (0,1366)	Não Não	X2X6 X2X5	41,5334 41,6434	3	0,3787 0,3771	0,1716 0.1695	Não Não
X6	126,1405	2	0,0024	(0,1402)	Não	X1X6	41,9469	3	0,3729	0,1639	Não
X1 X1X2X3X5X6X7	126,1527 43,2664	7	0,0023 0,7089	(0,1403) (0,1644)	Não Não	X5X6 X1X3X4X5	45,4353 33,9562	3 5	0,3242 0.5402	0,0990	Não Não
X1X2X3X7	78,5929	5	0.4097	(0,1806)	Não	X2	52,9706	2	0,1912	0,0757	Não
X1X2X5X7 X2X3X5X7	79,1856 79,4594	5	0,4052 0.4031	(0,1896) (0,1938)	Não Não	X1X4X5 X1X2X5	40,4432 40,9220	4	0,4218 0,4151	0,0749 0,0642	Não Não
X1X3X5X7	79,9998	5	0,3990	(0,2020)	Não	X2X5X6	41,2449	4	0,4106	0,0570	Não
X2X3X5 X1X3X5	97,8487 98,3481	4	0,2480 0,2442	(0,2032) (0,2093)	Não Não	X1X2X6 X1X4X6	41,8028 42,8855	4	0,4028 0.3877	0,0445	Não Não
X1X2X3	99,9882	4	0,2317	(0,2292)	Não	X2X4X6	42,9126	4	0,3873	0,0197	Não
X1X2X6X7 X2X5	83,3026 122,5683	5 3	0,3739 0,0447	(0,2522) (0,2737)	Não Não	X1X5X6 X2X4	43,8787 51,2467	4	0,3739 0,2432	(0,0018) (0,0091)	Não Não
X1X5X6	104,2337	4	0,1994	(0,2809)	Não	X1X2X5X6	38,5754	5	0,4758	(0,0485)	Não
X1X5	123,8957 127,5991	3	0.0346 0.0065	(0,2871) (0,3247)	Não Não	X1X2 X4X5	53,4722 55,8668	3	0,2121 0,1787	(0,0505) (0,0951)	Não Não
X1X2	127,5991	3	0,0065	(0,3247)	Não	X1	66,2115	2	0,0065	(0,1355)	Não
X1X2 X2X6						X4				m	
X1X2 X2X6 X1X6	128,1059	3 6	0,0026 0,4910	(0,3298) (0,3574)	Não Não	X5	66,2842 66,5067	2	0,0055 0,0024	(0,1366) (0,1402)	Não Não
X1X2 X2X6 X1X6 X1X2X3X6X7 X1X2X5	128,1059 69,9110 121,0792	6 4	0.4910 0.0713	(0,3574) (0,4859)	Não Não	X5 X1X2X4X6	66,5067 43,7814	5	0,0024 0,4031	(0,1402) (0,1938)	Não Não
X1X2 X2X6 X1X6 X1X2X3X6X7	128,1059 69,9110	6	0,4910	(0,3574)	Não Não Não	X5	66,5067	2	0,0024	(0,1402)	Não Não Não Não

O caso 1 contemplou o maior número de correlações aceitas pelo modelo de maximização de opções. O maior R² ajustado alcançado foi de 0,8483, evidenciando uma relação significativa entre o EVA®, WACC, Custo de Capital Próprio e a variação na participação dos custos sobre a receita líquida. Para este caso, podemos concluir que questões operacionais envolvendo a gestão dos custos, foram decisivas para Embraer na obtenção de maior valor. Além disso, o custo de capital próprio demonstrou evidencias claras de influencia no valor da organização.

No caso 2, as correlações efetuadas possibilitaram eleger o modelo contemplado todas as variáveis independentes como significante para a análise. Nenhuma outra combinação possuiu relevância para ser aceita com explicativa. Portanto, neste caso 2, o EVA® possuiu correlação significante com todas as demais variáveis independentes.

Para o caso 3, semelhantemente ao caso 2, foi possível constatar correlação do EVA® com todas as variáveis independentes, e ainda, um segundo modelo foi aceito como possibilidade de alta correlação, R^2 ajustado de 0,9684, contemplado pela união das variáveis independentes (X1 - X2 - X4 - X5 - X6 - X7).

O último caso possibilitou a aceitação de quatro combinações de variáveis independentes que, significativamente, explicaram correlação com o EVA®. Notou-se que o caso 4, dentre os casos analisados, foi o segundo em números de correlações aceitas.

Para a Embraer as análises contidas tanto nas correlações lineares simples e depois nas múltiplas, puderam evidenciar que o EVA® possui estreita correlação com fatores operacionais, variáveis estas diretamente ligadas a gestão estratégica da companhia. Ficou demonstrado ainda que no o maior R² ajustado nas correlações múltiplas, 0,9895, foi atingido quando o EVA® correlacionou-se com o Preço da Ação, Kd Custo Capital de Terceiros, Ks Custo de Capital Próprio, Crescimento da Receita, Participação dos Custo sobre a Receita Líquida, Variação do Lucro Líquido e Variação do Lucro Líquido por Ação.

5.3 As análises envolvendo o setor aeroespacial mundial

No início deste estudo definimos que trataríamos, em primeiro plano, de questões envolvendo a Embraer e, em seguida, análises intrínsecas do setor aeroespacial mundial. Assim, o foco central desta etapa é:

• qual a relação entre o *EVA*® gerado e os principais indicadores de desempenho do setor aeroespacial?

No ambiente acadêmico tem se observado uma criação cada vez maior de técnicas gerenciais envolvendo métodos avaliativos a fim de municiar os executivos a perseguirem a maximização do retorno de suas empresas para seus acionistas, estes métodos, como o EVA®, podendo ter maior ou menor grau de correlação com demais indicadores de desempenho.

Como abordado neste estudo, o EVA® é um indicador de desempenho que tem marcado espaço no cenário empresarial, refletindo a geração de valor para uma determinada organização, condicionando fatores de investimento, custo de capital e retorno esperado.

Na avaliação do setor aeroespacial, este estudo de caso baseou-se na observação da relação direta do EVA® entre principais indicadores de desempenho encontrados na organização, partindo do pressuposto que estes evidenciam a geração de valor.

Neste sentido, foram apresentados dados em um período de 2003 a 2005 e a mediana do período para treze empresas do setor em âmbito mundial.

As empresas relacionadas foram:

- 1. Alliant Techsystems
- 2. Armor Holdings
- 3. Boeing
- 4. Embraer
- 5. Gencorp

- 6. General Dynamics
- 7. Goodrich
- 8. L-3 Communications
- 9. Lockheed Martin
- 10. Northrop Grumman
- 11. Raytheon
- 12. Rockwell Collins
- 13. United Technologies

A análise proposta teve o objetivo de avaliar a performance de cinco indicadores de desempenho em relação ao EVA®, revendo assim a simetria de informação entre os indicadores relacionados ao valor, que ao observarmos os reports destas companhias, apresentam-se com maior ênfase.

Os indicadores analisados foram:

- 1. EVA® Economic Value Added¹⁴
- 2. $ROA Return \ on \ Asset^{15}$
- 3. $ROE Return \ on \ Equity^{16}$
- 4. Retorno da ação
- 5. ROI *Return on investments*¹⁷
- 6. EBITDA Earnings Before Interest Tax, Depreciation and Amortization ¹⁸

Apresentadas as principais premissas de análise, a pesquisa baseou-se em relacionar o EVA® com a demais variáveis de valor, e para isto, estabeleceu-se a necessidade de análises de regressão linear simples e múltipla.

Variável dependente: EVA® - Valor econômico adicionado dos períodos em análise;

¹⁴ EVA® - Valor econômico adicionado

¹⁵ ROA – Retorno sobre o ativo

¹⁶ ROE – Retorno sobre o patrimônio líquido

¹⁷ ROI – Retorno sobre o investimento

¹⁸ EBITDA – Lucro antes dos impostos, depreciação e amortização

Variáveis independentes: 1) ROA – Retorno sobre ativo = Lucro Líquido/Ativo Total; 2) ROE – Retorno sobre o patrimônio líquido = Lucro Líquido/Patrimônio Líquido; 3) Retorno da ação = Variação percentual ([t/t-1]-1)¹⁹ do preço da ação negociado em bolsa; 4) ROI – Retorno sobre investimento; 5) EBITDA – Lucro antes dos impostos, depreciação e amortização.

Para que a variável dependente EVA® e independente EBITDA estivessem na mesma base numérica das demais, utilizou-se a metodologia de Biddle, Bowen e Wallace (1997) de ajustar as variáveis para a mesma escala, dividindo-as pelo valor do capital empregado das empresas.

Como procedimento estatístico, optou-se por iniciar análises de regressão linear simples, onde o EVA® passou a ser analisado em relação aos demais indicadores de desempenho, denominados variáveis independentes. Todas as cinco variáveis independentes foram analisadas quanto a performance em relação a variável dependente, gerando comparação entre variáveis sobre a ótica do \mathbb{R}^2 e, ainda, na execução do teste de significância t ao nível de 0,05.

A equação básica adotada foi $Y = a + b_1 X_1 + e$, onde Y é a variável dependente EVA® e X_1 é a variável independente - o ROA, por exemplo. Os coeficientes da regressão são a e b_1 e o erro é representado pelo e.

_

 $^{^{19}}$ [t/t-1]-1 – Preço da ação do período corrente dividido pelo preço da ação do período anterior

Assim, tivemos como resultados:

Tabela 25: Regressão linear simples em 2003 – Setor aeroespacial

R ² 2003	EVA	ROA	ROE	RET. AÇÃO	ROI	EBITDA
EVA	1,0000	0,8723	0,8115	0,2044	0,9955	0,9523
ROA	0,8723	1,0000	0,8086	0,1125	0,8706	0,7802
ROE	0,8115	0,8086	1,0000	0,0666	0,7742	0,6702
RET. AÇÃO	0,2044	0,1125	0,0666	1,0000	0,2071	0,1719
ROI	0,9955	0,8706	0,7742	0,2071	1,0000	0,9643
EBITDA	0,9523	0,7802	0,6702	0,1719	0,9643	1,0000

Tabela 26: Teste t em 2003 – Setor aeroespacial

Test t 2003	EVA	ROA	ROE	RET. AÇÃO	ROI	EBITDA
EVA		8,6699	6,8817	1,6813	49,2712	14,8163
ROA	8,6699		6,8169	1,1808	8,6030	6,2480
ROE	6,8817	6,8169		0,8858	6,1406	4,7276
RET. AÇÃO	1,6813	1,1808	0,8858		1,6950	1,5110
ROI	49,2712	8,6030	6,1406	1,6950		17,2366
EBITDA	14,8163	6,2480	4,7276	1,5110	17,2366	

Tabela 27: Validação das variáveis independentes em 2003 – Setor aeroespacial

Test t 2003	EVA	ROA	ROE	RET. AÇÃO	ROI	EBITDA
EVA		Sim	Sim	Não	Sim	Sim
ROA	Sim		Sim	Não	Sim	Sim
ROE	Sim	Sim		Não	Sim	Sim
RET. AÇÃO	Não	Não	Não		Não	Não
ROI	Sim	Sim	Sim	Não		Sim
EBITDA	Sim	Sim	Sim	Não	Sim	

Para o ano de 2003, a análise mostrou que o EVA® como variável dependente tem relação maior com o ROI – Retorno sobre o investimento com $R^2 = 0,9955$ e teste t de significância considerado apropriado para análise.

A segunda maior correlação do EVA® se deu com o EBITDA, $R^2 = 0.9523$, e logo em seguida com o ROA e ROE, $R^2 = 0.8723$ e $R^2 = 0.8115$, respectivamente. Desta forma, notaose que para 2003, a maior relação do EVA® com os demais indicadores de valor se deu de forma definitiva com os que contemplaram informações do resultado operacional da organização, principalmente ROI, EBITDA, ROA e ROE. O indicador variação sobre o preço da ação mostrou-se sem correlação significativa com o EVA®, confirmado pelo teste t de significância, e conforme Tabela 27, não possível de ser considerada.

A análise evidenciou também o ano de 2004, como segue:

Tabela 28: Regressão linear simples em 2004 – Setor aeroespacial

R ² 2004	EVA	ROA	ROE	RET. AÇÃO	ROI	EBITDA
EVA	1,0000	0,7352	0,6109	0,0017	0,9955	0,9016
ROA	0,7352	1,0000	0,9625	0,0013	0,7498	0,5022
ROE	0,6109	0,9625	1,0000	0,0094	0,6260	0,3585
RET. AÇÃO	0,0017	0,0013	0,0094	1,0000	0,0074	0,0025
ROI	0,9955	0,7498	0,6260	0,0074	1,0000	0,9031
EBITDA	0,9016	0,5022	0,3585	0,0025	0,9031	1,0000

Tabela 29: Teste t em 2004 – Setor aeroespacial

Test t 2004	EVA	ROA	ROE	RET. AÇÃO	ROI	EBITDA
EVA		5,5269	4,1560	-0,1388	49,3296	10,0377
ROA	5,5269		16,7995	-0,1186	5,7418	3,3312
ROE	4,1560	16,7995		-0,3224	4,2905	2,4793
RET. AÇÃO	-0,1388	-0,1186	-0,3224		-0,2867	-0,1660
ROI	49,3296	5,7418	4,2905	-0,2867		10,1230
EBITDA	10,0377	3,3312	2,4793	-0,1660	10,1230	

Para o ano de 2004 o mesmo efeito de correlação observado em 2003 se repetiu. O EVA® teve maior grau de correlação com o ROI – Retorno sobre o investimento. Por mais uma vez, para o setor aeroespacial, não se constatou relação significante entre o EVA® e o preço da ação.

Tabela 30: Validação das variáveis independentes em 2004 – Setor aeroespacial

Test t 2004	EVA	ROA	ROE	RET. AÇÃO	ROI	EBITDA
EVA		Sim	Sim	Não	Sim	Sim
ROA	Sim		Sim	Não	Sim	Sim
ROE	Sim	Sim		Não	Sim	Sim
RET. AÇÃO	Não	Não	Não		Não	Não
ROI	Sim	Sim	Sim	Não		Sim
EBITDA	Sim	Sim	Sim	Não	Sim	

A Tabela 30 confirma a rejeição da hipótese de correlação entre o EVA® e o preço da ação e, ainda, em uma análise subsequente, tendo como variável dependente o preço da ação (RET. AÇÃO) e as demais variáveis como independentes, não se constatou, novamente, correlação significante para ser aceita a hipótese.

Contudo, é possível inferir que até o momento, analisados 2003 e 2004, o preço da ação não possui correlação direta para ser aplicado como influenciador na relação de valor para o setor aeroespacial em comparação com os demais indicadores de desempenho.

Em 2005, tivemos:

Tabela 31: Regressão linear simples em 2005 – Setor aeroespacial

R ² 2005	EVA	ROA	ROE	RET. AÇÃO	ROI	EBITDA
EVA	1,0000	0,9601	0,7773	0,0634	0,9996	0,9782
ROA	0,9601	1,0000	0,8477	0,1332	0,9620	0,9132
ROE	0,7773	0,8477	1,0000	0,2914	0,7844	0,6663
RET. AÇÃO	0,0634	0,1332	0,2914	1,0000	0,0702	0,0336
ROI	0,9996	0,9620	0,7844	0,0702	1,0000	0,9783
EBITDA	0,9782	0,9132	0,6663	0,0336	0,9783	1,0000

Tabela 32: Teste t em 2005 – Setor aeroespacial

Test t 2005	EVA	ROA	ROE	RET. AÇÃO	ROI	EBITDA
EVA		16,2795	-6,1961	-0,8630	157,2939	22,2029
ROA	16,2795		-7 ,8253	-1,3001	16,6828	10,7551
ROE	-6,1961	-7,8253		2,1270	-6,3259	-4,6869
RET. AÇÃO	-0,8630	-1,3001	2,1270		-0,9115	-0,6182
ROI	157,2939	16,6828	-6,3259	-0,9115		22,2457
EBITDA	22,2029	10,7551	-4,6869	-0,6182	22,2457	

Tabela 33: Validação das variáveis independentes em 2005 – Setor aeroespacial

Test t 2005	EVA	ROA	ROE	RET. AÇÃO	ROI	EBITDA
EVA		Sim	Sim	Não	Sim	Sim
ROA	Sim		Sim	Não	Sim	Sim
ROE	Sim	Sim		Não	Sim	Sim
RET. AÇÃO	Não	Não	Não		Não	Não
ROI	Sim	Sim	Sim	Não		Sim
EBITDA	Sim	Sim	Sim	Não	Sim	

Em 2005, o resultado da pesquisa mostrou semelhança com 2004.

Novamente a correlação mais acentuada do EVA® ocorreu com o ROI – Retorno sobre investimento, $R^2=0.9996,\ R^2=0.9782$ e $R^2=0.9601$ para o EBITDA e ROA, respectivamente.

A Tabela 33, teste *t*, corrobora com o resultado inicial da pesquisa em 2005, admitindo rejeição da hipótese de correlação entre o EVA®, preço da ação.

Para que a análise pudesse superar qualquer sazonalidade por um determinado período específico, optou-se pela captura de dados em três momentos e, ainda, elaborado pela mediana dos dados dos três anos estudados, construiu-se um quarto período.

Tabela 34: Regressão linear simples (mediana 2003, 2004 e 2005) – Setor aeroespacial

R ² MEDIANA	EVA	ROA	ROE	RET. AÇÃO	ROI	EBITDA
EVA	1,0000	0,6818	0,7474	0,0001	0,9969	0,8970
ROA	0,6818	1,0000	0,3479	0,1593	0,6828	0,4168
ROE	0,7474	0,3479	1,0000	0,0525	0,7097	0,6488
RET. AÇÃO	0,0001	0,1593	0,0525	1,0000	0,0002	0,0258
ROI	0,9969	0,6828	0,7097	0,0002	1,0000	0,9049
EBITDA	0,8970	0,4168	0,6488	0,0258	0,9049	1,0000

Tabela 35: Teste *t* (mediana 2003, 2004 e 2005) – Setor aeroespacial

Test t MED.	EVA	ROA	ROE	RET. AÇÃO	ROI	EBITDA
EVA		4,8544	5,7043	0,0330	59,7850	9,7883
ROA	4,8544		2,4225	-1,4439	4,8665	2,8037
ROE	5,7043	2,4225		0,7809	5,1858	4,5081
RET. AÇÃO	0,0330	-1,4439	0,7809		-0,0488	0,5392
ROI	59,7850	4,8665	5,1858	-0,0488		10,2313
EBITDA	9,7883	2,8037	4,5081	0,5392	10,2313	

Tabela 36: Validação das variáveis independentes (mediana 2003, 2004 e 2005) — Setor aeroespacial

Test t MED.	EVA	ROA	ROE	RET. AÇÃO	ROI	EBITDA
EVA		Sim	Sim	Não	Sim	Sim
ROA	Sim		Sim	Não	Sim	Sim
ROE	Sim	Sim		Não	Sim	Sim
RET. AÇÃO	Não	Não	Não		Não	Não
ROI	Sim	Sim	Sim	Não		Sim
EBITDA	Sim	Sim	Sim	Não	Sim	

Considerando as análises envolvendo a mediana, tivemos simetria de informações com os anos de 2003 e 2004, onde o EVA® possuiu correlação considerável com os indicadores de valor ROI, EBITDA, ROE e ROA e, ainda, sendo rejeitada a hipótese de correlação com o preço da ação.

Abrangendo a análise de regressão linear para o setor aeroespacial e considerando a hipótese de correlacionar o EVA® aos possíveis mais importantes indicadores que persigam a geração de valor em uma empresa, notou-se que o EVA® para o setor aeroespacial possuiu consistência e simetria com o ROI, EBITDA, ROE e ROA, a correlação não foi observada para com o retorno sobre a ação, ou preço da ação.

Desta forma, para o setor aeroespacial, observando apenas a regressão linear, é possível inferir que a valorização ou não do preço da ação não é expressa diretamente pela movimentação dos outros indicadores de valor, podendo talvez refletir que a utilização do preço da ação não seja um indicador observado como diretamente condutor do valor das empresas estudadas.

Prosseguindo as análises, foram efetuadas regressões lineares múltiplas objetivando avaliar a melhor performance da variável dependente em relação às variáveis independentes. Dada a escolha da variável dependente, o EVA®, sucessivas análises foram executadas a fim

de estabelecer a melhor e mais significativa composição de indicadores de desempenho, formados pelas variáveis independentes, que possuíssem correlação com o EVA®, e assim, a nova equação definida foi: $Y = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + ... + e$, onde X_1 representa a primeira variável escolhida, X2 a segunda variável e, assim, sucessivamente, enquanto houver melhora no valor de R².

Dando continuidade as análises de regressão múltipla, tomamos com ponto inicial o ano de 2003, definindo o EVA® como variável dependente e as cinco demais (ROA, Retorno ação, ROE, ROI e EBITDA) como variáveis independentes. Os resultados encontrados foram:

Em 2003:

 $R^2 = 0.5600$

 R^2 ajustado = 0,2457

Com 5 e 7 graus de liberdade, temos $Fs^{20} = 3.97$ e para $F^{21} = 1.7819$, onde F<Fs, aceita-se a hipótese de inexistência de correlação linear significativa entre a variável dependente e as variáveis explanatórias.

Em 2004:

 $R^2 = 0.7152$

 R^2 ajustado = 0,5118

Com 5 e 7 graus de liberdade, temos Fs = 3,97 e para F = 3,5155, onde F<Fs, aceita-se a hipótese de inexistência de correlação linear significativa entre a variável dependente e as variáveis explanatórias.

Em 2005:

 $R^2 = 0.7622$

 R^2 ajustado = 0,5923

²⁰ Fs – Estatística F de significância

²¹ F – Estatística F para teste de hipótese

Com 5 e 7 graus de liberdade, temos Fs = 3,97 e para F = 4,4864, onde F<Fs, rejeita-se a hipótese de inexistência de correlação linear entre a variável dependente e as variáveis explanatórias., havendo assim correlação, e portanto, a fim de evidenciar qual a melhor combinação entre a variável dependente e as variáveis independentes, construiu-se um modelo de otimização das variáveis, estatística Cp²², proporcionando os melhores conjunto de variáveis, ou seja, os melhores R². E para 2005, tivemos:

Tabela 37: Melhores combinações entre variáveis (2005) – Setor aeroespacial

						Considerar
Modelo	Ср	k	\mathbb{R}^2	R ^{2 ajustado}	Erro Padrão	este modelo?
X1X2X4X5	4,271691	5	0,7529	0,6294	0,1016	Sim
X1X4X5	3,633325	4	0,7067	0,6089	0,1044	Sim
X1X2X3X4X5	6	6	0,7622	0,5923	0,1065	Sim
X1X2X3X4	5,550795	5	0,7095	0,5642	0,1102	Não
X1X3X4X5	5,60642	5	0,7076	0,5614	0,1105	Não
X1X3X4	5,021706	4	0,6595	0,5460	0,1124	Não
X1X2X4	5,364987	4	0,6478	0,5304	0,1143	Não
X1X2X3	7,617866	4	0,5713	0,4284	0,1262	Não
X1X3	7,216458	3	0,5170	0,4204	0,1270	Não
X3X4	7,654292	3	0,5021	0,4025	0,1290	Não
X3X5	8,00889	3	0,4901	0,3881	0,1305	Não
X2X3X4	8,516112	4	0,5408	0,3877	0,1306	Não
X1X3X5	8,526047	4	0,5404	0,3872	0,1306	Não
X1X2X3X5	9,023305	5	0,5915	0,3872	0,1306	Não
X2X3X5	9,323529	4	0,5133	0,3511	0,1344	Não
X1X4	8,989075	3	0,4567	0,3481	0,1347	Não
X3X4X5	9,47714	4	0,5081	0,3442	0,1351	Não
X2X5	9,227216	3	0,4487	0,3384	0,1357	Não
X2X3X4X5	10,33278	5	0,5470	0,3205	0,1375	Não
X1X2	10,24734	3	0,4140	0,2968	0,1399	Não
X2X3	10,48257	3	0,4060	0,2872	0,1409	Não
X2X4X5	11,08794	4	0,4534	0,2712	0,1424	Não
X1X2X5	11,11854	4	0,4524	0,2698	0,1426	Não
X2X4	11,82227	3	0,3605	0,2326	0,1462	Não
X4X5	11,94895	3	0,3562	0,2274	0,1467	Não
X3	11,85465	2	0,2914	0,2270	0,1467	Não
X1X5	14,72324	3	0,2619	0,1143	0,1570	Não
X2	16,51199	2	0,1332	0,0544	0,1623	Não
X4	18,36546	2	0,0702	(0,0143)		Não
X1	18,56571	2	0,0634	(0,0217)	0,1687	Não
X5	19,44398	2	0,0336	(0,0543)	0,1713	Não

_

²² Estatística Cp – Teste de modelo estatístico avaliativo de modelos

O modelo acima, considerando o R² ajustado, proporciona entendimento quanto aos possíveis modelos que possam ser considerados como passíveis de correlação aceitável, entre a variável dependente e as independentes, onde:

X1 = ROA

X2 = ROE

X3 = RETORNO AÇÃO

X4 = ROI

X5 = EBITDA

Os dois primeiros conjuntos de variáveis aceitas com correlação relevante contaram com a presença das variáveis independentes ROA, ROE, RETORNO AÇÃO, EBITDA E ROI, confirmando o esboçado na regressão linear simples, o retorno da ação não reflete relação considerável com os principais vetores de valor para o setor aeroespacial.

Para a mediana dos anos 2003, 2004 e 2005:

 $R^2 = 0.7772$

 R^2 ajustado = 0.6181

Com 5 e 7 graus de liberdade, temos Fs = 3,97 e para F = 4,8844, onde F<Fs, rejeita-se a hipótese de inexistência de correlação linear entre a variável dependente e as variáveis explanatórias. Da mesma forma como procedido para os dados de 2005, através da estatística Cp buscou-se a construção dos melhores conjuntos de variáveis que maximizassem o R². E assim, para a mediana, temos:

Tabela 38: Melhores combinações entre variáveis (mediana) – Setor aeroespacial

						Considerar
Modelo	Ср	k	\mathbb{R}^2	R ^{2 ajustado}	Erro Padrão	este modelo?
X1X2X3X4	4,025874	5	0,7764	0,6646	0,0944	Sim
X1X2X3X4X5	6	6	0,7772	0,6181	0,1007	Sim
X1X2X4	4,970629	4	0,6827	0,5769	0,1060	Não
X1X2X4X5	6,428463	5	0,6999	0,5499	0,1093	Não
X1X4X5	7,161031	4	0,6130	0,4840	0,1171	Não
X1X2	8,031936	3	0,5216	0,4259	0,1235	Não
X1X3X4X5	9,159911	5	0,6130	0,4195	0,1242	Não
X2X3	9,012933	3	0,4904	0,3885	0,1274	Não
X1X2X3	9,443121	4	0,5404	0,3871	0,1276	Não
X1X2X5	9,637882	4	0,5342	0,3789	0,1284	Não
X2X3X5	9,644704	4	0,5339	0,3786	0,1285	Não
X2X4	9,575976	3	0,4725	0,3670	0,1297	Não
X2X3X4	10,03229	4	0,5216	0,3621	0,1301	Não
X2X5	9,994748	3	0,4591	0,3510	0,1313	Não
X3X4X5	10,42585	4	0,5091	0,3454	0,1318	Não
X1X2X3X5	11,42624	5	0,5409	0,3113	0,1352	Não
X2X3X4X5	11,44374	5	0,5403	0,3105	0,1353	Não
X2X4X5	11,56726	4	0,4728	0,2970	0,1366	Não
X1X3X5	12,24332	4	0,4512	0,2683	0,1394	Não
X4X5	14,35836	3	0,3203	0,1843	0,1472	Não
X2	17,41555	2	0,1593	0,0829	0,1561	Não
X1X5	17,45884	3	0,2216	0,0659	0,1575	Não
X3X4	18,09825	3	0,2013	0,0415	0,1595	Não
X1X4	18,19745	3	0,1981	0,0377	0,1599	Não
X1X3	18,36755	3	0,1927	0,0312	0,1604	Não
X3	20,77148	2	0,0525	(0,0336)	0,1657	Não
X1X3X4	19,38154	4	0,2241	(0,0346)	0,1657	Não
X5	21,61293	2	0,0258	(0,0628)	0,1680	Não
X4	22,4153	2	0,0002	(0,0907)	0,1702	Não
X1	22,41897	2	0,0001	(0,0908)	0,1702	Não
X3X5	22,71932	3	0,0542	(0,1350)	0,1736	Não

As variáveis acima sendo:

X1 = ROA

X2 = ROE

X3 = RETORNO AÇÃO

X4 = ROI

X5 = EBITDA

Na análise proposta pode-se observar que o melhor conjunto de variáveis que se relacionou com o EVA® e proporcionou maior R² foi o composto por todas as variáveis independentes, exceto o EBITDA, mas em posição subseqüente, o segundo melhor conjunto contou com o EBITDA.

6. CONSIDERAÇÕES FINAIS

Nesta pesquisa, buscou-se enfatizar, em primeiro lugar, os conceitos teóricos mais modernos em finanças que administradores e executivos das grandes corporações mundiais têm se valido para a tomada de decisão.

Com o desenvolvimento dos conceitos técnicos foi possível caminhar no sentido principal desta pesquisa, sendo:

 como o EVA® se correlaciona, tanto para a Embraer bem como para o setor aeroespacial, com os principais indicadores de desempenho e, ainda, com o preço da ação.

No primeiro tópico do objetivo da pesquisa, a análise consistiu em avaliar o valor da Embraer através do EVA® e identificar correlação com a estrutura de capital adotada. Entretanto, se a observação fosse apenas concentrada neste sentido, os resultados obtidos não seriam capazes de confirmar uma correlação significante entre o EVA® e a estrutura de capital. Desta forma, embora a estrutura de capital pudesse ter influenciado na geração de valor, possivelmente para Embraer, outro fatores foram mais relevantes. A fim de buscar estes outros fatores, a análise foi expandida, e através de correlações lineares e múltiplas, foi possível identificar que o EVA®, no caso da Embraer, sofre influência significante apenas do NOPLAT, que como explicitado anteriormente, é o lucro operacional ajustado aos impostos. Desta forma, para empresa em análise, pode-se inferir que o EVA® é influenciado diretamente pelas características e desempenho dos fatores operacionais, pelo desempenho de crescimento da organização.

Contemplando o segundo tópico do objetivo central deste trabalho, foram construídas diversas análises a fim de responder se para o setor aeronáutico mundial o EVA® estabelecia relação estreita com o preço da ação. Para isto, foi utilizada metodologia semelhante à encontrada no trabalho de William Eid Junior e Sônia Bruck (2002). Assim, através de sucessivas análises, não houve subsídios capazes de proporcionar a confirmação de correlação significativa entre o EVA® e o preço da ação para o setor aeronáutico. Algumas proposições

foram geradas para explicar este diagnóstico, podendo não haver correlação direta uma vez que o preço das ações indica uma expectativa futura de desempenho, e os indicadores observaram uma posição já ocorrida. Ainda, há possibilidade dos indicadores de desempenho do setor não levarem em conta as perspectivas, de forma determinante, a expectativa do preço da ação, servindo neste contexto, de indicadores para a gestão operacional. Por fim, aumentando o limite da análise, outras correlações foram exploradas, identificando qual a mais significativa que poderia ser estabelecida entre os principais indicadores de desempenho e o EVA®, chegando a conclusão que o ROE, ROA, EBITDA e ROI, mantêm correlação significante.

Em uma observação mais generalista entre ambas as pesquisas, isto é, para a Embraer e para o setor aeronáutico, não foi possível caracterizar que fatores externos pudessem ser correlacionados significantemente com o EVA®. Contudo, a desempenho operacional justificou o desempenho evolutivo do valor.

Desta forma, caracterizou-se nesta pesquisa que o desempenho operacional marcado pela elevação da receita, diminuição dos custos, aumentos das margens brutas e operacionais, foram definitivas para a explicação da evolução do EVA®, tanto para a Embraer bem como para o setor aeronáutico.

Portanto, o EVA® neste estudo pode ser definido como uma variável dependente aos fatores internos à organização, e assim, sua maximização dependerá da excelência na gestão, e sua perpetuidade estará condicionada ao contínuo aprimoramento das técnicas de controle e o amadurecimento dos executivos à tomada de decisões.

BIBLIOGRAFIA

ANTHONY, Robert N. Accounting for the Cost of Equity. New York: Harvard Business Review, Nov./Dez. 1973.

ANTHONY, Robert N., DEARDEN, John, BEDFORD, Norton. *Management Control Systems*. New York, 1984.

ANTHONY, Robert N., GOVINDARAJAN, V. Sistemas de controle gerencial. São Paulo: Atlas, 2002.

MARTINS, Eliseu e ASSAF, Neto Alexandre. - Administração Financeira: as finanças das empresas sob condições inflacionárias, São Paulo, Atlas, 1986.

ASSAF NETO, A. Mercado Financeiro, 4 ed. São Paulo: Atlas, 2001.

ATKINSON, Anthony A. et al. Contabilidade Gerencial. 2 ed. São Paulo: Atlas, 2000.

BACIDORE, Jeffrey, BOQUIST, John, MILBOUN, Todd & THAKOR, Anjan. *The Search for the Best Financial Performance Measure*. New York: Finance Analyst Journal, 1997.

BACKER, Norton & JACOBSEN, Lyle E. Contabilidade de Custos: uma abordagem gerencial. São Paulo: McGraw-Hill, 1984.

BARFIELD, Richard. Accountancy. Nearly New: 1998.

BIDDLE, Gary C; BOWEN, Robert M; WALLACE, James S – *Does EVA® Beat Earnings? Evidence on Associations with Stock Returns and Firm Values.* Journal of Accounting & Economics. New York: 1997.

BILAS, Richard, Teoria Microeconômica: uma análise gráfica. Rio de Janeiro: Forense, 1976.

BOOTH, Rupert – *Economic Value Added as a Management Incentive*. London: Management Accounting, 1997.

BOVESPA http://www.bovespa.com> Acesso em janeiro de 2006.

BRABAZON, Tony and SWEENWY, Breda – *Economic Value Added – Really Adding Something New?* Ireland: Accountancy, 1998.

BREALEY, Richard A., MYERS, Stewart C. *Principles of Corporate Finance*. 4. ed New York: MCGraw-Hill, 1991

BRIGHAM E. e GAPENSKI L. *Intermediate Financial Management*. 5 ed New York: The Dryden Press, 1996.

BRIGHAM, E. F.; GAPENSKI, L. C.; EHRHARDT, M. C. Administração financeira: teoria e pratica. São Paulo: Atlas, 2001.

BRIGHAM, E. F., HOUSTON, J.F. Fundamentos da moderna administração financeira. Rio de Janeiro: Campos, 1999.

BURCH, E. Earl & HENRY, William R. *Opportunity and Incremental Cost: Attempt to Define in Systems Terms.* The Accounting Review, 1974.

CARVALHO, Edmir L. de. A relação entre o EVA® (*Economic Value Added*) e o valor das ações e na Bolsa de Valores do Estado de São Paulo. Dissertação de Mestrado. FEA USP, 1999.

CLINTON, Douglas; CHEN, Shimin. *New Performance Measures*. Management Accouting, 1998.

COPELAND, Tom et al. Valuation: Measuring and Managing the Value of Companies. New York: Wiley, 1995.

COPELAND, Tom, KOLLER, Tim, MURRIN, Jack. Avaliação de empresas – calculando e gerenciando o valor das empresas. 3 ed. McGraw-Hill, 2001.

COPELAND, Thomas E., WESTON, J. Fred. *Financial Theory and Corporate Policy*. 3 ed. Massachussetts: Addison-Wesley Publishing, 1992.

DAMODARAN, Aswath. *The dark side of valuation*. Editora Financial Times Prentice Hall, 1° ed., 2001.

DAMODARAN, Aswath. A Face oculta da Avaliação: Avaliação de Empresas da Velha Tecnologia, da Nova tecnologia e da Nova Economia. São Paulo: Makron Books, 2002.

DICKEY, Robert I. Accountants Costs Handbook. New York: Ronald Press, 1967.

DIERKS, Paul A; PATEL Ajay. What is EVA, and How Can It Help Your Company? Management Accounting, 1997.

EMBRAER http://www.embraer.com.br Acesso em janeiro de 2006.

EID, Willian; BRUCK, Sônia. Medidas de criação de valor e retorno das ações. São Paulo: ENANPAD, 2002.

ECONOMATICA http://www.economatica.com Acesso em janeiro de 2006.

EHRBAR, *et al.* EVA® - Valor Econômico Agregado: A verdadeira chave para a criação de riqueza. Rio de Janeiro. Qualitymark, 1999

FAMA, RUBENS; BARROS, L.A.; SILVEIRA, H. P. Conceito de Taxa Livre de Risco e sua Aplicação no CAPM – Um Estudo Exploratório para o Mercado Brasileiro. II

Encontro brasileiro de finanças, 2002.

FERGUSON, Robert; LEISTIKOW, Dean. Search the Best Financial Performance Measure: basic are better. Financial Analysts Journal, 1998.

FERNANDES, Eudes Emiliano Maretti e FERNANDES, Osmar. EVA®: A Melhor Maneira de Medir a Remuneração dos Investimentos. São Paulo: Revista Paulista de Contabilidade, Set. 1998.

FREEDMAN, Julian. New Research Red Flags EVA® for stock Picks. Management Accounting, 1998.

FREZATTI, Fábio. Valor da Empresa: Avaliação de Ativos pela Abordagem do Resultado Econômico Residual. Caderno de Estudos do FIPECAFI, Set.-Dez. 1998.

FRIEDMAN, Laurence & NEUMANN Bruce R. The Effects of Opportunity Costs on Project Investment Decisions: A Replication and Extension. Journal of Accounting Research, 1980.

GALESNE, Alain. FENSTERSEIFER, Jaime E. LAMB, Robert Boyden. Decisões de investimentos da empresa. 1 ed. São Paulo. Atlas, 1999.

GARISON, R. e NOREEN, E. (2001) Contabilidade Gerencial, 9 ed. (2000), LTC - Livros Técnicos e Científicos Editora, Rio de Janeiro, Brasil.

GITMAN, L. Princípios de administração financeira. 7 ed. São Paulo: Harba, 1997.

GRAY, Jack & JONHSTON, Keneth. Contabilidade e Administração. São Paulo: MCGraw-Hill do Brasil. 1977.

GRELLMANN, Hélio Luiz. Teoria da estrutura e custo de capital: evolução recente e estado da arte. Dissertação de mestrado. FEA-USP, 1981.

HENDRIKSEN, Eldon. BREDA, Michael, F.V. Teoria da contabilidade. São Paulo: Atlas, 1999.

HORNGREN, Charles T. Contabilidade de Custos: um enfoque administrativo. São Paulo: Atlas, 1986.

HUBBELL Jr, William W. Combining Economic Value Added and Activity Based Management. Cost Management, 1996.

IUDÍCIBUS, Sérgio de. Teoria da Contabilidade. São Paulo: Atlas, 1987.

JENSEN, Michael C. Agency costs of free cash flow, corporate finance and takeovers. American Economic Review, May 1986.

JP MORGAN http://www.morganmarkets.com Acesso em janeiro de 2006.

LANG, Larry; OFEK, Eli; STULZ, René M. Leverage, investment, and firm growth. Journal of Financial Economics, 1996.

LEFTWICH, Richard H. *Introductions to Microeconomics*. New York: Holt, Renehart and Winston, 1970.

LEININGER, Wayne E. *Opportunity Cost: some definitions and examples.* The Accounting Review, Jan 1977.

LELAND, Hayne E. *Agency costs, risk management, adn capital structure.* The Journal of Finance, Ago 1998.

LEME, Thomaz de Aquino Garcez. Custo de Oportunidade do Capital. São Paulo: FEA-USP, Circulação Interna, 1991.

MAKELAINEN, Esa. *Economic Value Added as a Management Tool.* Master's Thesis. 1998, Helsinki School of Economics and Business Administration, Helsinki – Finland.

MARTINS, Eliseu. Contabilidade de Custos. 3º ed. São Paulo: Atlas, 1987.

MARTINS, Gilberto de Andrade. Manual para Elaboração de Monografias e Dissertações. 2º ed.São Paulo: Atlas, 1994.

MEPHAN, M. J. *Opportunity Cost and the Accountant*. Journal of the Institute of Cost and Management Accountants, 1981.

MEYERS, Albert L. Elementos de Economia Moderna. 4 ed. Rio de Janeiro: Ibero-Americano. 1960.

MILLER, M.H. *The Modigliani-Miller- Proposition after thirty years*. Journal of Economic Perspectives, Vol 2, 1988.

MILLER, Roger Leroy. Microeconomia: teoria, questões e aplicações. São Paulo: McGraw-Hill, 1981.

MODIGLIANI, F.; MILLER, M. H *The cost of capital, coporation finance and the theory of investment.* American Economic Review, 1958.

MODIGLIANI, F.; MILLER, M. H. Corporate income taxes and the cost of capital: a Correction. American Economic Review, 1963.

MORSE, Wayne J. & ROTH, Harold P. Cost Accounting: processing, EVA®luating and using cost data. Massachussetts: Addison-Wesley Publishing, 1986.

MUNEY, Glen A. *Theory of Financial Structure*. Holt, Rinehart and Winston Inc,k 1969.

MYERS, Stewart C. *Interactions of corporate financing and investment decisions* – *Implications for capital budgeting.* The Journal of Finance, New York, Vol XXIX, 1974.

MYERS, Stewart C. The capital structure puzzle. The Journal of Finance, 1984.

NAKAMURA, Wilson T. Estrutura de capital das empresas no Brasil: evidências empíricas. Dissertação (Mestrado em Administração) – Faculdade de Economia, Administração e Contabilidade, Universidade de São Paulo, 1992.

NIEDZIELSKI, Joe. *Better New Business Appraisal Needed by CEOs.* Cincinati: National Underwriter Life & Health Financial Services, 1995.

PEREIRA, Carlos A. Avaliação de Resultados e Desempenhos. In. CATELLI, ^a (Coord.). Controladoria: Uma abordagem da Gestão Econômica – GECON. São Paulo: Atlas, 1999.

PETTIT, Justin. Governing for value. [S.l.] [s.n.] Autumn. 1998.

PETRY, Glenn H. An Unidentified Corporate Risk: using the wrong cost of funds. MSU Business Topics, 1998.

PINDYCK, Robert S.; RUBINFELD, Daniel L. Microeconomia. São Paulo: Makron Books, 1994.

PORTERFIELD, James T. S. Decisões de Investimento e Custo de Capital. São Paulo: Atlas, 1976.

PORTELLA, Gualter. Lucro residual e contabilidade: Instrumental de análise financeira e mensuração de performance. Caderno de Estudos FIPECAFI, São Paulo, 2000.

RAPPAPORT, Alfred. Creating Shareholder Value. New York: Free Press, 1998.

RAPPAPORT, Alfred. Gerando valor para o acionista. Ed. Atlas, São Paulo, 2001.

RICARDO, David. Princípios de Economia Política e Tributação. São Paulo: Victor Civita, 1982.

ROSS, Stephen A., WESTERFIELD, Randolph W., Jaffe, Jeffrey F. Administração financeira: São Paulo, Atlas, 2002.

SANTOS, J. Odálio. Cálculo e interpretação do valor das empresas: um guia prático. São Paulo: Saraiva, 2005.

SHARPE, William F. Capital asset prices: a theory of market equilibrium under conditions of risk. The Journal of Finance, 1964.

SOLOMON, Ezra. Leverage and Cost of Capital. [s.l.] Journal of Finance, 1982.

STERN & STEWART Internet: http://www.sternstewart.com

STEWART, G. Bennet. The Quest for Value: The EVA® Management Guide. [s.l.] Harper

Business, 1990.

STEWART & CO., Stern. Increasing Wealth For Your Shareholders. New York: [s.n.], 1999.

STULZ, René. *Managerial discretion and optimal financing policies*. Journal of Financial Economics, 1990.

WESTON, J. F.; BRIGHAM, E. F. Funadamentos da administração financeira. 10 ed. São Paulo: Makron Books, 2000.

YAMAMOTO, Marina e FREZATTI, Fábio – *Economic Value Added*: uma ameaça ou oportunidade para a contabilidade. In: Congresso Internacional de Custos. México, 1997.

YIN, Robert K. Estudo de caso: Planejamento e Métodos. 2. ed.Porto Alegre: Bookman., 2001.

YOUNG, David. *Economic Value Added: a primer for european managers*. [s.l.] European Management Journal, 1997.

YOUNG, David., O'BYRNE, Stephen. EVA® e Gestão Baseada em Valor.. Porto Alegre: Bookman, 2003.